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Abstract 
Gene expression variation between alleles in a diploid cell is mediated by variation in cis 
regulatory sequences, which usually refers to the differences in DNA sequence between two 
alleles near the gene of interest. Expression differences caused by cis variation has been 
estimated by the ratio of the expression level of the two alleles under a binomial model. However, 
the binomial model underestimates the variance among replicated experiments resulting in the 
exaggerated statistical significance of estimated cis effects and thus many false discoveries of 
cis-affected genes. Here we describe a beta-binomial model that estimates the cis-effect for each 
gene while permitting overdispersion of variance among replicates. We demonstrated with 
simulated null data (data without true cis-effect) that the new model fits the true distribution better, 
resulting in approximately 5% false positive rate under 5% significance level in all null datasets, 
considerably better than the 6%-40% false positive rate of the binomial model. Additional 
replicates increase the performance of the beta-binomial model but not of the binomial model. We 
also collected new allele-specific expression data from an experiment comprised of 20 replicates 
of a yeast hybrid (YPS128/RM11-1a). We eliminated the mapping bias problem with de novo 
assemblies of the two parental genomes. By applying the beta-binomial model to this dataset, we 
found that cis effects are ubiquitous, affecting around 70% of genes. However, most of these 
changes are small in magnitude. The high number of replicates enabled us a better approximation 
of cis landscape within species and also provides a resource for future exploration for better 
models.  

Introduction 
Variation in gene expression contributes significantly to phenotypic variation (Jacob and Monod 
1961; Mcclintock 1956). Consequently, gene regulatory elements have long been thought to be 
an important target of natural selection comparable in significance to variation in the proteome 
(Ohno 1972; King and Wilson 1975; Wray 2007). The genetic architecture of variation in gene 
regulation can be decomposed into cis variation and trans variation. The cis variation affects 
expression differences between two individuals in a non-diffusible manner (e.g., a mutation on a 
promoter region), while trans variation affects the expression difference in a diffusible manner 
(e.g., a coding region mutation on a transcription factor) (Emerson and Li 2010; Wittkopp, Haerum, 
and Clark 2008).   
 
In an F1 hybrid cell, two alleles of the same gene are exposed to the same diffusible elements, 
so any difference between the alleles’ expression must be encoded by features linked to the gene 
itself (i.e., cis variation).  By measuring the allele-specific expression of all genes in hybrid cells, 
we can measure the magnitude of cis variation (cis-effect) and detect cis-affected genes (Signor 
and Nuzhdin 2018; Emerson and Li 2010). The cis effect parameter (ecis) for a gene is defined as 
the ratio of the expression from allele 1 and allele 2 (Emerson et al. 2010; Schaefke et al. 2013). 
However, previous allele-specific expression studies using RNA-seq for cis-effect typically 
employed 1-3 hybrid replicates in binomial framework (Emerson et al. 2010; Schaefke et al. 2013; 
Metzger, Wittkopp, and Coolon 2017; Rhoné et al. 2017; Mack, Campbell, and Nachman 2016; 
McManus et al. 2014; Bell et al. 2013), which assumes that the read counts for each allele among 
replicates can be modeled as a Poisson random variable.  
 
The actual variance among RNA-seq experiments is known to be overdispersed, and 
consequently, the single Poisson parameter is inadequate to model both the mean and variance. 
The negative binomial distribution instead has been shown to fit better than Poisson in many 
differential expression studies (Robinson and Smyth 2007; Schurch et al. 2016; Gierliński et al. 
2015). The negative binomial distribution is equivalent to the compound gamma-Poisson 
distribution, where the lambda parameter of Poisson is a gamma-distributed random variable. The 
two parameters of the negative binomial permit the mean and variance to vary independently. 
Therefore, we modeled allelic expression for each gene with a negative binomial distribution 
instead of a Poisson distribution. Under this assumption, the cis-effect ecis is beta-binomially 
distributed with an overdispersion parameter compared with the binomial distribution (See 
Materials and Methods: Cis variation estimation).  
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We compared the false positive rates of the two models with simulated null datasets where no 
true cis effects exist. We found that the binomial model has high false positive rate even with a 
large number of replicates, but the beta-binomial model improves with increased replication, 
attaining a 5% false positive rate as expected.  
 
We also grew 20 replicates of hybrid from the cross of yeast Saccharomyces cerevisiae strains 
YPS128 and RM11-1a to estimate cis variation. YPS128 is a woodland stain (Sniegowski, 
Dombrowski, and Fingerman 2002) and RM11-1a is a derivative of a vineyard strain (Brem et al. 
2002). We used RNA-seq for allele-specific counts and estimated the gene-wise ecis with both 
models. In terms of power, both models improve as replication increases. We found from this 
experimental data that ~70% of the total 4710 informative genes have a significant cis difference. 
Around 2% of the total genes have a greater than 2-fold difference significantly. 
 
Estimated from the simulated null data, 20% - 30% genes lacking a true cis effect would be falsely 
classified as significant by the binomial model. In our experimental data, the beta-binomial model 
and binomial model differ by ~5% in the number of significant cis affected genes (Figure 4), which 
is less than the 15% - 25% difference in false-positive rate estimated from the null data. This could 
perhaps be explained by the possibility that the two strains are sufficiently diverse that most of 
the genes are true positives. However, for closely related species (or strains) with less differential 
gene expression, a 5% false positive rate would contribute a much higher proportion to the total 
number of differentially expressed genes. 
 
This allele-specific study demonstrated the advantage of the beta-binomial model over the 
binomial model and the salutary effect of using high replication. The high number of replicates of 
hybrid samples between the two yeast strains enabled us a better approximation of cis landscape 
within species. It also provides a resource for future exploration of better models.  

Materials and Methods 

Yeast strains and preparation of hybrid samples 
To prepare the hybrid strain, we mixed a single colony of YPS128 strain (MATα; ura3::kanMX; 
HO::HygMX; lys2::ura3) and a single colony of RM11-1a strain (MATa; leu2Δ0; ura3Δ0; 
HO::kanMX) together in 100 ul YPAD, put the mix in 30 °C for 4 hours, then we poured 50ul of 
mixed cells into a dropout plate (-leu, -lys), and struck to get one single diploid colony.  
 
We picked one single diploid colony and struck it on the standard YPAD plate for hybrid sample 
collection. We then collected 20 independent hybrid samples started from this YPAD plate. Each 
sample was generated by the following procedure: 
 
One single colony was taken from the YPAD plate and was cultured overnight. It was then diluted 
to OD 0.05 in 5ml YPAD and grow until OD 0.7-0.8 in 30 °C with 220 rpm shaking. The yeast 
culture was then distributed in Eppendorf tubes by 1 ml per tube, centrifuged with 9000 rpm to 
remove the supernatant, snap-frozen in liquid Nitrogen and finally stored at -80℃ for DNA and 
RNA extraction.  

DNA extraction and sequencing  
We extracted the DNA of these 20 hybrid samples using the Yeast DNA Extraction Kit (Thermo 
Scientific 78870). After extraction, we used the Nextera DNA Library Preparation Kit (Illumina) to 
make 20 libraries with unique barcode combination (Nextera Index Kit ) and pooled them together 
before sequencing. We sequenced the pooled library in UC Davis Genome Center  
(http://dnatech.genomecenter.ucdavis.edu/) with 1 Lane of mid-output Nextseq PE75. We then 
demultiplexed (Renaud et al. 2015) the pooled reads and got a total of 95.3 million reads for the 
20 replicates.   
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RNA extraction and sequencing 
We extracted the RNA of these 20 hybrid samples using the TRIzol Plus RNA Purification Kit 
(Invitrogen). Transcriptome libraries were made by the Smart-seq2 protocol (Picelli et al. 2014). 
The 20 Libraries were pooled together and sequenced in UC Davis Genome Center with 4 Lanes 
of high-output Nextseq PE75. After demultiplexing (Renaud et al. 2015), we got a total of 1530.8 
million reads for the 20 replicates. 

Sequencing and assembly of YPS128 and RM11-1a genome  
We assembled our YPS128 and RM11-1a genome and used them as the reference genomes in 
mapping DNA/RNA reads. We extracted whole genome DNA of YPS128 strain and RM11-1a 
strain using the QIAamp DNA Mini Preparation Kit (Qiagen), prepared Nextera DNA library 
(Illumina) and sequenced the pooled library with 1 Lane of Miseq PE75, which generated an 88X 
coverage for the YPS128 strain and a 102X coverage for the RM11-1a strain. We also generated 
long DNA reads with Oxford Nanopore (Rapid sequencing) for RM11-1a strain and got a 59X 
coverage. Since our Nanopore experiment failed for the YPS128 strain, we downloaded its Pacbio 
long reads from this project (Yue et al. 2017) which gives a 230X coverage.   
 
For YPS128 strain, we used Dextractor (https://github.com/thegenemyers/DEXTRACTOR) to 
extract fastq sequences from the original h5 files. Then we used Canu (Koren et al. 2017) for raw 
assembly and finisherSC (Lam et al. 2015) for gap fixing, followed by two rounds of quiver 
(https://github.com/PacificBiosciences/GenomicConsensus) correction. We further polished the 
assembly with Illumina short reads using pilon (Walker et al. 2014) and pacbio long reads again 
using quiver followed by one final round of pilon. We ended up with an assembly with 
NG50=808.6K and Busco score (Simão et al. 2015) of 94.4%(fungi). 
 
For RM11-1a strain, we used Albacore (ONT software version 2.2.7) for nanopore long reads 
base-calling. Then we used Canu (Koren et al. 2017) for raw assembly followed by finisherSC  
(Lam et al. 2015) for gap fixing, then corrected the raw assembly by three rounds of Racon 
(https://github.com/isovic/racon). We further polished the assembly with the Illumina short reads 
using Pilon (Walker et al. 2014) and nanopore long reads again using Racon. We did the pilon-
racon for two rounds and wrapped up with four rounds of pilon. Finally, we obtained an assembly 
with NG50=919.8K and Busco score (Simão et al. 2015) of 93.7% (fungi).  
 
The qualities of the assemblies are further evaluated with QV estimation. We aligned the Illumina 
reads used for polishing to the final assembly using bwa mem (Li and Durbin 2009) with default 
parameters. Following (Koren et al. 2018), we used freebayes (V.1.2.0-4) (Garrison and Marth 
2012) to estimate the number of SNPs and indel variants with the command “freebayes -C 2 -0 -
O -q 20 -z 0.10 -E 0 -X -u --ploidy 1 -F 0.75 -f asm.fasta asm_nodup.bam > asm.vcf”. Total based 
changed E ( inserted, deleted, substituted ) was summed and divided by the total number of bases 
(T) with minimum coverage 3. QV was calculated as -10log10(E/T).  
 

Collect DNA/RNA read counts 

Identify variants between YPS128 and RM11-1a. 
The reads from hybrid samples are unidentifiable of which parental genotype they belong to if 
they don’t overlap with any variant (SNPs or Indels) between the two parental strains. So we first 
extracted a list of SNPs and Indels by comparing the YPS128 assembly and RM11-1a assembly 
using MUMmer((Kurtz et al. 2004) MUMmer/3.23: nucmer; show-snps). For conservativeness, 
we did it in both directions (using YPS128 as query, RM11-1a as subject and then exchange) and 
only retained the SNPs and Indels that appear in both comparisons.    
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Mapping DNA reads with two references 
We next mapped the DNA reads of the 20 hybrid samples to both assemblies using bowtie2 
((Langmead and Salzberg 2012) bowtie2.2.7) and got 40 mapping files. We then counted the 
allele-specific number of reads hitting each variant position with Samtools ((Li et al. 2009) 
Samtools 1.9: mpileup setting -q to 5 to ignore multi-hits reads) and customized scripts 
(count_pileup.py: count the number of reads mapping to the reference allele and alternative allele 
respectively using mpileup output file as input). 
 
We found that the mapping always biases towards the reference genome. In hybrid DNA samples, 
the reads from YPS128 genome is expected to be of the same amount as from RM11-1a genome. 
However, when YPS128 assembly was used as the reference genome, the sum of reads 
assigned to YPS128 allele across all variants is around 1.4 fold more than the sum of reads 
assigned to RM11-1a allele in all of the 20 hybrids. This also happened when RM11-1a was used 
as the reference genome. The sum of reads assigned to RM11-1a allele across all variants is 
around 1.4 fold more than the number of reads assigned to YPS128 allele (Figure S1).  
 
One main reason for this mapping bias is that when one assembly was chosen as the reference 
genome, the reads from the alternative genome in the hybrid sample are not as likely to map to 
the correct genomic position because of the variant. So we conceived that the alternative counts 
for each SNP/indel in the mapping results are underestimated while the reference counts are 
more reliable. Thus, we only kept the YPS128 allelic reads from mapping results using YPS128 
as the reference genome and RM11-1a allelic reads from mapping results using RM11-1a as the 
reference genome. Some variant positions are close to each other and the reads that cover both 
of them would be counted repeatedly when summing up the counts, so we also unioned the reads 
from each allele using the reads’ names as identifiers. After this operation, we reduced most of 
the mapping bias, but the total read counts still biased towards RM11-1a genome by around 1% 
(Figure S2). 

Identifying suspected loci causing mapping bias  
Another possible source for mapping bias are the errors in genome assembly and the 
incoordination between the assembly and the real genotype in hybrid (the YPS128 strain’s Pacbio 
long-reads used in assembly is not from this project), or regions that the sequencing probability 
for two alleles is extremely different. In these loci, nearly all the allelic read counts would be 
assigned to one of the genomes.  As these kinds of loci accumulate, the bias would be reflected 
in the total read counts. Thus, we check the reads that cover each variant position to see whether 
the nucleotide information provided by the short reads in hybrid samples match with the variant 
we got from genome comparison. For example, If the SNP pair is A on YPS128 and C on RM11-
1a from the comparison of assemblies, short reads with A and short reads with C on the 
corresponding positions are both required to exist in all mapping results. Variants without 
sufficient short reads support were removed for downstream analysis (12793 positions are 
removed from total 82029 positions in YPS128; 12326 positions are removed from total 81574 
positions in RM11-1a). After the removal of those positions, we recounted the read counts 
overlapping with the remaining positions and also unioned the reads covering consecutive 
positions (group_reads.py, yps5rmB_gc.py), the mapping bias was then sufficient small to be 
ignored (Figure S3). 

Mapping expression reads and collecting allele-specific read counts 
We first annotated the two assemblies with CrossMap ((Zhao et al. 2014) v0.2.8: using S.cer 
reference annotation), and label each variant position with gene name. The variant positions that 
are not in any gene regions or overlap with two gene range (Some gene overlaps in yeast) are 
further removed. There are 37487 variant positions retained, which cover 4710 genes.  
 
We then mapped the Expression reads using bowtie2 (bowtie 2.2.7: there are very limited intron 
regions in the yeast genome, so we didn’t choose an RNA splice-sites aware mapping tool) to 
both two assemblies. Same as the procedure for DNA reads counting, we collected counts from 
only reference allele for each retained position.   
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Finally, we aggregated the read counts of variant positions under the same gene name and 
counted allelic reads with samtools and customized scripts as we did for DNA counts 
(group_reads.py, yps5rmB_gc.py).  The total read counts of YPS128 allele and RM11-1a allele 
are almost the same in the 20 hybrid samples (Figure S4).  

Remove bad replicates 
We checked the correlation of the read counts between each of the 40 allele-specific expression 
profiles ( function cor() in R (R Foundation for Statistical Computing, Vienna, Austria., n.d.), Figure 
S5), and found that the expression profiles from two replicates 14A and 9A are apparently different 
from other replicates. These two replicates are happened to be the two outliers in Figure S4 (the 
leftmost and rightmost point). We decided to remove them for downstream analysis.  

Cis variation estimation  
We use the ratio of two alleles' expression in the hybrid to measure cis variation ecis between the 
two alleles in one gene.   

Binomial model 
If one assumes that the read counts in a gene for two alleles X and Y in one sample can be 
modeled by independent Poisson Variables, X and Y can be expressed as :  

 

 (1) 
 
C1 represents the total read counts from one genotype which X allele rested on. C2 represents 
the total read counts from the other genotype which Y allele rested on. In true hybrid samples, C1 
and C2 are almost the same, but in simulations or parental samples they’re not necessarily the 
same; λ1 and λ2 represent the proportion of reads mapping to the corresponding alleles. The total 
read counts C1 and C2 are variable across biological replicates, while  λ1,λ2 are assumed to be 
biological properties of a gene (expression level) that keep constant across biological replicates. 
The cis effect (ecis) is related to the mapping rate parameter λ as follows: 
 

  (2) 
 
Conditionally on X+Y = n, the probability of k reads mapped to X allele (X=k) is:  
  

(3) 
 
So, the read counts of X allele can be modeled by a binomial distribution conditioned on the sum 
of the two alleles: 
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, 
 

 (4) 
 
The pdf (probability density function) for X allele’s count in one sample is  
 

 (5) 
 
Since the reads count variable X is independent across t biological replicates, the joint pdf is the 
product of the above pdf. Thus, we can use the Maximum likelihood method to estimate ecis. The 
log-likelihood function to maximize is 
 

  (6) 
 

For accommodating the mel2() function in R, in which we applied the log-likelihood function, the 
optimization for ecis is done on log space. The output is log2(ecis) and its confidence interval.   

Beta-binomial model 
The assumption that the read counts for alleles can be modeled by independent Poisson 
Variables may not be appropriate since there is usually more variability than the Poisson Model. 
 
The negative-binomial model provides a good fit to the gene-level read counts distribution 
(Robinson and Smyth 2007). It’s equivalent to the gamma-Poisson model where the Poisson rate 
is gamma distributed, adding one degree of freedom to adjust the variance independently of the 
mean. We now use negative-binomial variables to model the read counts mapped to allele X and 
Y in the hybrid sample. 
 

  (7) 
 
The mean, variance and variance-to-mean ratio for X and Y are shown below: 
 

  (8) 
 

C1 and C2 represent the total read counts for each genotype in the sample as in binomial model;  
λ1 and λ2 represent the proportion of reads mapping to the corresponding alleles; λ1=r1*p/(1-p) 
and λ2=r2*p/(1-p). The assumption for the above modeling is that the two alleles of the same gene 
have the same variance-to-mean ratio D (p is a constant for X and Y). It is necessary for deriving 
the beta-binomial distribution below. Although this assumption can not reflect reality completely, 
it’s still more relaxed than the previously used Poisson model in which the variance equals the 
mean. When p approaches 0, the negative-binomial model approaches the Poisson Model.  
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The cis variation ecis is related to the parameter r in the above model: 
 

  (9) 
 
Conditionally on X+Y = n, the probability of k reads mapped to X allele (X=k) is:  
 

 
          (10) 
So, the read counts of X allele can be modeled by a beta-binomial distribution conditioned on the 
sum of the two alleles: 
 

 (11) 
 
In order to incorporate ecis into the distribution, we reparametrize the beta-binomial distribution 
with ecis and  which describes the over-dispersion of the beta-binomial distribution from the 
corresponding binomial distribution.  Let:  
 

  (12) 
 
Then from equation 8 : 

  (13) 
 
It shows that θ is positively correlated with p.  
Then, together with equation(9), we got:  
 

  (14) 
 
The beta-binomial model approaches the binomial model when θ approaches zero. With the new 
parameterization, the pdf (probability density function) for X allele’s count in one sample is  
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  (15) 
 
Since the reads count variable X is independent across t biological replicates, the joint pdf is the 
product of the above pdf. Thus, we can use the Maximum likelihood method to estimate the cis 
variation ecis along with the over-dispersion parameter θ. The final log-likelihood function to 
maximize is 
 

 (16) 
 
As in the binomial model, the final estimation of ecis, θ and their confidence intervals are on log 
space. The outputs are log2(ecis) and log2(θ) and their confidence intervals.  

C1 and C2 parameter estimation 
For calculating the ecis for a gene, the maximum likelihood method for both models need 4 input 
from each replicates: ki, ni, C1i, C2i. 
 
C1i and C2i are the total expression read counts of the two genotypes. Since there are around 80% 
of reads in hybrid samples cannot be identified of which genome they belong to, the total allelic 
reads number cannot be known accurately. 
 
Here we just used the total identifiable read counts from YPS128 allele as C1 and those from 
RM11-1a allele as C2 for each sample. That is to say that the aforesaid  λ1 and λ2 are no longer 
the mapping rate relative to total allelic read counts but to total identifiable allelic read counts. 
This does not affect the estimation of ecis and its confidence interval If we assume that the 
identifiable read counts are proportional to true read counts of each allele in the hybrid samples.    

Generate null datasets lacking cis-variation.  
In order to compare the binomial model and the beta-binomial model. We generated two datasets 
from experimental data which in principle should have no cis-variation and four datasets from 
negative-binomial (gamma-Poisson) distributed random number.  

Null datasets from experiments 
The first dataset “Gier2015” was generated from a haploid yeast gene expression study (Gierliński 
et al. 2015) which has 48 biological replicates under the same condition: snf2. We downloaded 
the short reads data from ENA (ENA archive, Project ID: PRJEB5348), then, as described in the 
paper,  got rid of four bad replicates (rep6, rep13, rep25, rep35) and obtained gene read counts 
with TopHAT2 (Kim et al. 2013) and HTseq (Anders, Pyl, and Huber 2015).  We then combined 
every two haploid expression profiles into 1892 ( P(44,2) = 44 ⨉ 43) hybrid samples (Table 1). 
 
The second dataset “Xinw2018_yps” was generated in a similar way but from our hybrid samples. 
We combine every two gene expression profiles from 18 qualified replicates of YPS128 allele, 
which generated 306 (P(18,2) = 18 *17 ) no-cis hybrid samples (Table 1).  
 
Some simulated hybrid samples have less variation between two alleles, some have more, but 
by doing this permutation and the bootstrap (see below), the structural bias from choosing 
extreme hybrids by chance can be attenuated and the average effect of models can be obtained.  
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Null datasets from random number 
Although the null dataset generated from experimental data should in principle have no cis-
variation, the variation between alleles is not controlled and the true underlying distribution is 
unknown. So to test both binomial and beta-binomial model with fully-defined hybrid samples, we 
generated four datasets “simu_null: 1-4” for 5000 genes from the negative-binomial (gamma-
Poisson) distribution (Table 1).  

 
The expression counts of each allele for gene i was generated from the negative-binomial 
distribution using R: 
 

 
 
We set C  = 1e6; pi was set to 0.1, 0.4, 0.8 respectively for “simu_null:1-3” . For “simu_null:4”, we 
used a variable p for each gene, which was chosen randomly from a uniform distribution of (0,0.8). 
We made the gene i have the same expected mapping probability λ across the four datasets, 
which was chosen by randomly picking a gene from our experimental expression data and use 
its averaged mapping probability. Since the mapping probability for each gene is set, ri for each 
gene was then calculated (ri =λ *(1-p)/p) and used as a parameter to generate Xi.  
 
As a result, each gene across these four datasets have the same expression level, while the 
variance is getting larger as pi getting larger. Since every two expression profiles were combined 
to make hybrids within each dataset, there would be no true cis-variation. The variance between 
alleles or among hybrid samples would be low in “simu_null:1” and high in “simu_null:3”.  

Bootstrap cis variation estimation 
To test the discovery rate or the false positive rate with different replication number, we randomly 
choose (without replacement) Nr replicates from all N hybrids. For each level of replication (i.e., 
Nr), we did the resampling from these N hybrids for t times. Each time, we calculated ecis and its 
95% confidence interval using maximum likelihood method (See Method: Cis variation estimation). 
If a gene’s log2(ecis) confidence interval overlap with 0 (ecis = 1 ), we classify it as a significant cis-
variant gene. Table 1 shows the N (number of hybrid samples), Nr (Number of replicates tested), 
and t (number of samplings) for each dataset.  

Results  

Assembly of reference genomes 
Read mapping biases related to using only a single reference genome will lead to biases in allele-
specific expression inference (Degner et al. 2009). To mitigate such bias, we constructed two 
reference quality de novo genome assemblies of the parental strains used in this study, YPS128, 
and RM11-1a.  
 
The contiguity, completeness, and accuracy of our assemblies are quite high (Table 2 and Figure 
1). Both assemblies exhibit a high level of contiguity, with the majority of chromosomes being 
covered by one or two contigs, comparable to that of the Saccharomyces cerevisiae S288C 
Reference R64-1-1 (Table 2 and Figure 1). The BUSCO score assesses genome assembly 
completeness by identifying conserved single copy orthologs (Simão et al. 2015). Both 
assemblies compare favorably to the yeast community reference genome (Table 2: RM11-1a: 
93.7%; YPS128: 94.4%; R64: 93.9%). The QV scores we calculate reflect the basepair-level 
concordance between an assembly and Illumina short reads (Koren et al. 2018). While the new 
assemblies are both quite accurate, due to the lower coverage and noisier long reads used in 
assembling RM11-1a, its assembly exhibited a lower QV even after polishing (Table 2: RM11-1a: 
35.6; YPS128: 60.0).  
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Allele-specific RNAseq 
We sequenced 20 replicates of hybrid mRNA samples. The 20 samples were used independently 
to construct 20 barcoded libraries that were pooled into a single sequencing experiment. After 
demultiplexing, we obtained 1.531 billion 75-bp paired-end reads. We then counted the allele-
specific counts for each gene using the SNPs/Indels between YPS128 and RM11-1a genomes. 
Mapping bias was eliminated by using both YPS128 and RM11-1a genomes as references in the 
mapping step and filtering out suspect SNPs/indels (Figure S4).  We then discarded two replicates 
exhibiting the lowest correlation with other replicates (Figure S5), and finally obtained 18 
replicates of allele-specific gene read counts for 4,710  genes. 

The beta-binomial distribution models cis-expression sampling 
variation better than the binomial distribution 
To assess the performance of two models, we additionally simulated 6 hybrid null datasets lacking 
true cis-variation (for details, see Materials and Methods: Generate null datasets lacking cis-
variation & Table 1). For each dataset (Table 1), we applied our inference machinery to estimate 
the cis-variation parameter and its 95% confidence interval for each gene. As the null data exhibits 
no true cis-variation, any significant expression should be caused by false positives. We then plot 
the rate of rejecting null hypothesis (which reduced to the false positive rate in the null simulations) 
against replication to examine the behavior of the models as power increases (Figure  2-4). The 
beta-binomial model exhibited a false positive rate closer to the prediction than the binomial model 
in null datasets. However, for both models, the performance was poor when there was little 
replication (Figure 2-3). 

Inference on a highly replicated dataset without genetic or environmental 
variation 
One validation of our model makes use of data from a yeast expression experiment comprising 
44 biological replicates of a single haploid yeast strain under the same condition (Gierliński et al. 
2015). Pairs of expression profiles were combined into synthetic/in silico hybrid samples by 
permuting pair assignments such that the two alleles within one synthetic hybrid do not have any 
true cis variation while retaining the sample variation between them (for details, see Materials and 
Methods: Generate null datasets lacking cis-variation & Table 1). This hybrid dataset was labeled 
“Gier2015”, yielding 1,892 permuted synthetic hybrid samples (44*43 = 1,892). 
 
To test whether increasing replication improves cis estimation, we randomly sampled Nr 
replicates without replacement from the 1,892 synthetic hybrids, performed cis parameter 
inference, and calculated the false positive rate. Nr ranged from 1 to 35 for this dataset. For each 
level of replication (i.e., Nr), we sampled, as described above, 150 times to determine the 
distribution of the false positive rate (Figure 2A; see Materials and Methods: Bootstrap cis 
variation estimation).   
 
We generated and analyzed another hybrid dataset “Xinw2018_yps” following a similar approach 
to “Gier2015”, but using our own expression experiment. The 18 expression profiles of the 
YPS128 allele were extracted from the 18 hybrid samples (2 of the 20 replicates are removed due 
to being outliers as measured in terms of exhibiting low correlation with other replicates), and 
pairs of profiles were combined into 306 (18*17=306) synthetic hybrids (Figure 2B).  
 
Our results demonstrate that the binomial model consistently rejects the null hypothesis at an 
elevated rate for α = 0.05, exhibiting a consistent rejection rate across levels of replication (Figure 
2A-B). The beta-binomial model consistently exhibits a rejection rate that is lower than that of the 
binomial model. However, the beta-binomial does show some variation in rejection rate at low 
replication. In particular, for low replication in both the “Gier2015” and “Xinw2018_yps” datasets, 
the beta-binomial model shows an excess rate of rejection that subsides as replication increases. 
 
The severity in underestimating variance using the binomial model depends on the underlying 
variance among replicates. The rejection rate of the binomial model can vary from 20% (Figure 
2A) to as high as 30% (Figure 2B). Increased replication seems to have little effect on diminishing 
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this problem. In contrast, the false-positive rate in the beta-binomial model improves as replication 
increases. The increasing of the false-positive rate at the beginning of Figure 2A is likely an artifact 
resulting from the starting point of the maximum likelihood optimizer (See Materials and Methods: 
Cis variation estimation). Other than this artifact, the beta-binomial model also appears to 
underestimate the variation among replicates with fewer replicates, leading to high false-positive 
rate, though reduced as compared to the binomial model. The rejection rates improve with 
sufficient replication, asymptoting towards the significant level α.  

De novo null simulation 
Although the null datasets we generated by randomly pairing real experimental replicates exhibit 
no true cis variation, there is the potential for unknown confounding factors that were not 
controlled. We therefore simulated four hybrid datasets for 5,000 genes from the gamma-Poisson 
distribution (“simu_null: 1-4”), with the same expression level between alleles and explicit 
overdispersion parameters so that we can study the behavior of overdispersed expression data 
in the absence of differential gene expression.   
 
The gamma-Poisson distribution (also known as the negative-binomial distribution) is widely used 
to model the read counts distribution among replicates (Robinson and Smyth 2007, 2008) . This 
distribution can be viewed as a Poisson distribution where the Poisson parameter is gamma 
distributed. 
 
We simulated the expression profile of 5,000 genes across a wide number of expression levels 
under this model. The four different datasets with different over-dispersion profiles were 
generated by systematically varying the “p” parameter in the gamma-Poisson distribution for each 
dataset. We ensured that each gene maintained the same expression level across all four 
datasets. When p approaches zero, the Gamma-Poisson model approaches the Poisson model. 
When p approaches one, the Gamma-Poisson model is strongly over-dispersed (for details, see 
Materials and Methods: Generate null datasets lacking cis-variation: Null datasets from random 
number). We randomly paired samples within each of the four datasets following the same 
approach described above for “Gier2015” and “Xinw2018_yps”. This permitted us to vary the level 
of overdispersion and study the consequences for inference. 
 
We set the p parameter to 0.1, 0.4, and 0.8 for the first three datasets (simu_null:1-3 respectively). 
As a result, the first dataset (simu_null:1) has the lowest over-dispersion with expression profiles 
(the closest to the Poisson model) whereas the third (simu_null:3) is the most over-dispersed.  
For the final simulation (simu_null:4) we chose a uniform distribution of p parameters with a mean 
of 0.4 for the 5,000 genes to simulate the impact for genome-wide inference when a dataset has 
genes with different levels of overdispersion.  
 
The false-positive rate for these four datasets shows a similar pattern as in “Gier2015” and 
“Xinw2018_yps”. The binomial model shows an elevated false-positive rate that is not mitigated 
with increased replication (Figure 3A-D). The degree of excess false positives is related to the 
simulated over-dispersion of each dataset.  The binomial model has a ~7% false-positive rate in 
“simu_null:1” which is only 2% higher than the expected 5% (Figure 3A), but it can be as high as 
38% in “simu_null:3” (Figure 3C). The performance of the binomial model on a changing “p” 
(Figure 3D, fp ~16%) is similar to the constant “p” with the corresponding mean with an ~3% 
higher rate of false-positives (cf. Figure 3B, fp ~13%). 
 
With few replicates and low overdispersion, the beta-binomial demonstrates a lower false-positive 
rate than expected (Figure 3A), suggesting that it is overestimating the variance when only a few 
replicates are used. The reverse is true under the high overdispersion simulation, suggesting it is 
underestimating the variance (Figure 3C). However, the model consistently approaches α with 
increasing replication. This is likely because the overdispersion parameter θ is poorly estimated 
with only a few replicates and relies on the initial arbitrary value in maximum likelihood optimizing, 
a situation that improves with higher replication.   
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The effects of replication on ASE confidence intervals 
We then applied the ecis inference machinery on the experimental dataset of our 18 replicated 
hybrid samples (Xinw2018). More significant genes are discovered as more replicates are used. 
When all 18 replicates are used, we observe the rate of rejection appears to asymptote to ~70% 
with the beta-binomial model. The number of significant genes from the binomial model exceeds 
the beta-binomial by ~5% (Figure 4). 
 
To explore the effect of gene expression level and number of replicates on the power, we chose 
100 typical genes from each of the following categories: “lowly expressed genes” (average counts: 
50-200); “intermediate expressed genes” (average counts: 400-600); and “highly express genes” 
(average counts: 1500-3500). We plotted the confidence intervals for each gene using the 
estimation calculated from four levels of replication (3,6,12,18). Genes are ranked by their cis 
effect (Figure 5).  
   
As expected, the beta-binomial model yields a wider confidence interval than the binomial model, 
reducing the false-positive rate. We also see that, as expected, when replication increases or with 
higher expression level, the confidence intervals narrow for both models, increasing the power 
(Figure 5).    

Cis variation between YPS128 and RM11-1a strain is ubiquitous 
and often small in magnitude 
The rate of rejection appears to asymptote to ~70% (Figure 4) with beta-binomial model in the 
“Xinw2018” dataset, suggesting that ~70% of the 4,710 genes we studied show evidence for 
expression variation, a marked increase compared to previous observations (Emerson et al. 2010; 
Schaefke et al. 2013; Metzger, Wittkopp, and Coolon 2017; Tirosh et al. 2009; Artieri and Fraser 
2014).  
 
We then summarized the ecis distribution calculated form all 18 hybrid replicates with the beta-
binomial model (Figure 6A, Table 3). The symmetry of the distribution of log2(ecis) indicates that 
there are similar amount of genes affected by cis-regulatory variation in both directions. 
Approximately 70% of the genes (3,308 out of 4,710 ) exhibit significant cis variation (| log2(ecis) 
| > 0; p < 0.05 ). Notably, the cis effect in most of these significant genes is small in magnitude. 
Of the differentially expressed genes (Figure 6B), 70% exhibit cis variation in the range 0 < | 
log2(ecis) | < 0.2, or less than a 1.15-fold difference. The genes with the cis variation | log2(ecis) | > 
1 (i.e. a 2 fold difference) only comprise 3% of all significant genes. 

Discussion 
Inference of allele-specific expression differences from F1 hybrids is a widely used perspective to 
explore the evolution of gene expression. Many results have been reported for a wide range of 
individuals, populations, or species (Tirosh et al. 2009; Wittkopp, Haerum, and Clark 2008; 
McManus et al. 2010; Emerson et al. 2010). Such inferences have been applied to questions 
about  compensation between  cis and trans variation (Romero, Ruvinsky, and Gilad 2012; Mack, 
Campbell, and Nachman 2016), stabilizing selection for expression level (Hodgins-Davis, Rice, 
and Townsend 2015), and cis-effect in inter-specific/intra-specific expression variation (Metzger, 
Wittkopp, and Coolon 2017; Rhoné et al. 2017)  and all depend in a central way on accurate 
measurement of cis variation. However, naive statistical models (Robinson and Smyth 2007) and 
the tendency to misuse replication has limited the utility of allele-specific-expression inference.  
 
In this work, we describe a beta-binomial model for estimation of cis expression variation in allele-
specific studies. It is based on a more suitable gamma-Poisson distribution of read counts among 
replicated experiments and is capable of accommodating over-dispersion of expression. We 
demonstrate the advantage of the beta-binomial model over the binomial model with both 
experimental and simulated data. The results showed that, with sufficient replication, the beta-
binomial model attains the nominal false positive rate while the binomial model consistently 
underestimates the variance leading to an elevated false-positive rate.  
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While, unlike the Poisson model, the gamma Poisson model permits the variance and mean to 
be independent, rigorous inference using the beta-binomial model derived from it still requires 
each allele to exhibit approximately the same variance-to-mean ratio (See Materials and 
Methods: Cis variation estimation: Beta-binomial Model). This limitation can be addressed by 
assigning different over-dispersion parameters for each allele, but inference becomes more 
complex. In any event, the good performance of the beta-binomial model suggests that potential 
improvement for ecis estimation is limited. 
 
The trade-off between the false-positive rate and power still holds in these two models. We used 
the significant gene list from our best estimates (i.e. the beta-binomial model with all 18 replicates) 
as a gold standard to explore the relative power of both models (Figure  S6 A). The binomial 
model has higher power than the beta-binomial model in all levels of replication. Of course, even 
the best statistical model would by definition exhibit α×100% false positives. If we assume the 18 
replicate beta-binomial model has 100% of power (Figure S6), then the proportion of true 
negatives that yields a false positive rate of 0.05 is (1-0.702)/(1-0.05) = 0.314. The 18 replicate 
binomial model rejects the null hypothesis 74.5% of the time, implying its false positive rate is 18% 
(0.18=1-(1-0.745)/0.314, assuming 100% power), which is consistent with our simulations (Figure 
2A). 
 
We uncovered many more cis-affected genes than previous intra-specific studies of yeast, where 
the proportion varies between 6%-29% (Emerson et al. 2010; Schaefke et al. 2013; Metzger, 
Wittkopp, and Coolon 2017). The main culprit is likely lower power in previous studies, although 
we also used YPS128 rather than the BY4741 strain common in previous studies. Figure 4,5 & 
S6 demonstrate that adding more replicates increases the power and the relative difference in 
the discovery rate can be as high as 55% (Figure 4).  Results from previous studies using one or 
two replicates yield comparable numbers of genes differentially expressed in cis (Figure 4, the 
left-most two points of the Binomial model), suggesting that the difference in our results is of 
higher power to detect smaller magnitude changes. 
 
Our results quantify the advantage of the beta-binomial model over the binomial model in 
detecting cis variation. The beta-binomial model estimates variance accurately and also has high 
statistical power as long as sufficient replicates are provided. Thus, our high replicate experiment 
describes an accurate and complete landscape of cis variation between YPS128 and RM11-1a. 
We recommend a beta-binomial model should for use in future allele-specific experiments and 
predict it will reveal an abundance of cis variation that previously remained hidden.  
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Table 1: Summary of the datasets used for this study 
 

 
Synthetic 

NULL Dataset 

Number of 
Genes in the 

Dataset 

Number of 
haploid 

expression 
profile 

Number of 
permutate hybrid 

samples (N) 

Number of 
replicates 
tested (Nr) 

Number of 
samplings for 

each Nr (t) 

Gier2015 6,023 44 1,892 1~35 500 
Xinw2018_yps 4,710 18 306 1~20 150 

simu_null:1 5,000 100 9,900 1~25 150 
simu_null:2 5,000 100 9,900 1~25 150 
simu_null:3 5,000 100 9,900 1~25 150 
simu_null:4 5,000 100 9,900 1~25 150 

Experimental 
Dataset     

available hybrid 
samples (N)     

Xinw2018 4710 ---- 18 1~18 150 
   
Table 1: Summary of the datasets used for this study (for details see Materials and Methods: 
Generate NULL datasets of no cis-variation). Gier2015 and Xinwe2018_yps are null datasets 
simulated from replicate expression profiles. Simu_null:1-4 are null datasets simulated from 
random number generator. Xinw2018 are real experimental data.  
 
The number of genes and number of replicated expression profiles (except Xinw2018, hybrid 
samples do not have haploid expression profile) are in column 2 & 3. The permuted hybrid 
samples are listed in column 4.  The number of replicates are listed in column 5. The ranges 
were chosen somewhat arbitrarily, but were enough to see the trend. For level of replication, we 
did the resampling t times shown in column 6.  
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Table 2:  The contiguity, completeness, and accuracy of YPS128 and RM11-1a genomes.  
 

 S.cer R64-1-1 Rm11-1a Yps128 
Assembly size (Mb) 12.16 11.95 12.09 

number of Contigs/scaffolds 17 19 29 
Contig N50 (Mb) 0.92 0.92 0.81 

Contig L50 6 6 6 
Contig N90 (Mb) 0.44 0.43 0.44 

Contig L90 13 13 14 
Busco score 93.9% 93.7% 94.4% 

Complete Busco 1,351 1,347 1,358 
Fragmented Busco 38 37 33 

Missing Busco 49 54 47 
QV score ---- 35.6 60.0 

 
 

 
 
Figure 1: The contiguity of our assemblies is comparable to that of the Saccharomyces cerevisiae 
S288C Reference R64-1-1. Contigs are ranked from longest to shortest. Their cumulative sum of 
length are shown on Y axis in mega bases. 
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Figure 2: False positive rate with different number of replicates. The blue and brown violin plot in 
each level of replication show the distribution of false positive rates from t (See Table 1) sampling 
results. The red horizontal line is the expected false positive rate of 0.05 (α = 0.05). The solid and 
dot lines on each plot are the median, 25% quantile and 75% quantile. 
 
A) The binomial model consistently rejects the null hypothesis at a rate around 20%. The beta-
binomial model consistently exhibits a rejection rate that is lower than that of the binomial model 
and is getting closer to the expected 5% as more replicates used. The rejection rates of beta-
binomial model improve with sufficient replication, approaching the significant level α.  
 
B) The binomial model consistently rejects the null hypothesis at a rate around 28%. Similar to 
panel A, the beta-binomial model consistently exhibits a lower rejection rate and is getting closer 
to the expected 5% as more replicates used.  
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 Figure 3:  False positive rate with different number of replicates in simu_null:1-4. The degree of 
excess false positives is related to the simulated over-dispersion of each dataset (p is a parameter 
controls the over-dispersion: when p approaches zero, the gamma-Poisson model approaches 
the Poisson model; when p approaches one, the gamma-Poisson model is strongly over-
dispersed). The binomial model has a consistent ~7% false-positive rate in “simu_null:1” which is 
only 2% higher than expected 5% (panel p=0.1), but it can be as high as 38% in “simu_null:3” 
(panel p=0.8). The performance of the binomial model on a changing “p” (panel p=unif(0,0.8)) is 
similar to the constant “p” with the corresponding mean except a ~3% more false-positives (panel 
p=0.4). With few replicates and low overdispersion, the beta-binomial demonstrates a lower false-
positive rate than expected (panel p=0.1). The reverse is true under the high overdispersion 
simulation. The beta-binomial model consistently approaches α with increasing replicates. 
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Figure 4: The discovery rate of the dataset “Xinw2018”. More significant genes are discovered as 
more replicates used. When all 18 replicates are used, the rate of rejection appears to asymptote 
to ~70% for the beta-binomial model and 75% for the binomial model. The two asymptotic lines 
were drawn by fitting the data to a negative exponential model.  
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Figure 5: The effect of gene expression level and number of replicates on the inference power. 
100 typical genes of low expression (average counts: 50-200), mid expression (average counts: 
400-600) and high expression (average counts: 1500-3500) are plotted for their confidence 
intervals using the estimation calculated from four levels of replication (3,6,12,18). The genes are 
ranked by their cis-effect: log2(ecis). Grey is for binomial model; Blue is for beta-binomial model.    
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Figure 6: A) The log2(ecis) distribution from all 18 hybrid replicates with beta-binomial model.  
B) The cumulative proportion of significantly cis-affected genes. The cis-affected genes are sorted 
by their cis effect, from largest to smallest. The cumulative proportion shows that most significant 
genes have a cis-effect of small magnitude.  
 
 
 
 
Table 3: The number of genes and their proportion in different cis-effect magnitude.  
 

4710 total genes Number of significant genes. 
(significant level: 0.05) 

Proportion of all genes 

|log2(ecis)| > 0 3308 70.2% 

|log2(ecis)| > 0.2 
(~1.15 fold change) 1008 21.4% 

|log2(ecis)| > 0.5 
(~1.4 fold change) 303 6.4% 

|log2(ecis)| > 1 
(2 fold change) 101 2.1% 
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Supplementary Figures 
 

 
Figure S1: The mapping bias of DNA read counts when using only one assembly as the reference 
genome. 
 
 

 
Figure S2: The mapping bias are mostly removed when using both assemblies as reference 
genomes.   
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Figure S3: The mapping bias of DNA read counts are further eliminated by filtering out suspected 
variant positions.  
 
 

 
 
Figure S4: By using two references and removing all suspected variant positions, no mapping 
bias shown up for the RNA read counts.    
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Figure S5: Correlation of 40 expression profiles. Profiles: r9A, y9A, r14A and y14A are removed 
for downstream analysis because of the low correlation with other replicates.   
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Figure S6: The statistical power of identifying significant cis-affected genes are plotted against 
increasing level of replication. The significant gene list from the best estimates (i.e. the beta-
binomial model with all 18 replicates) was used as a gold standard. The power increases for both 
models as more replicates used. Binomial model has higher statistical power than beta-binomial 
model. 
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