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Supplemental Methods

Mapping IGA reads to the reference genomes

In order to map the cDNA sequence reads to the genomes in each sample, every sequence read was
used as a query against each reference yeast genome by using Megablast with the wordsize
parameter set to 8. We then recorded all hits with up to two nucleotide mismatches. A mismatch may
be due to a sequencing error in the sequence read we obtained, a sequence error in the reference
genome(s), or a SNP site between the two reference genomes. In order to distinguish among these
possibilities, we developed a set of procedures: (i) For each genome, we classified the Megablast
results into three datasets - the perfectly matched sequence reads (BYmiso for the BY genome and
RMnmiso for the RM genome), the sequence reads with one mismatch (BYmis1 and RMmis1) and the
sequence reads with two mismatches (BYmisz and RMmis2). (ii) The perfectly matched sequences from
BY and from RM were combined together to form a new dataset (Allmiso) that included all the
perfectly matched sequences. (iii) Each sequence from BYmis1 or from RMmis1 was searched against
Allmiso. If the sequence was found in Allmiso, it was a sequence which had been perfectly mapped on
one of the genomes and had one SNP site against the other genome. On the other hand, if the
sequence was not in Allmiso, it was a sequence read with one sequence error site. Then all the
sequences with one sequence error site were obtained. (iv) The sequences with one sequence error
site and the sequences from Allniso were combined together to form a new dataset (Allmiso+1) that
included all the perfectly matched sequences and all the sequences with one sequence error site. (v)
The sequences with two sequence error sites were obtained by using a similar procedure as in (iii).
After completing the above procedure, we obtained all mapped reads with up to 2 RNA sequencing
errors (Allmiso+14+2)-

The proportions of the sequence reads that were perfectly mapped onto the BY genome and onto the
RM genome are shown in Table S1; about 62% of sequence reads were mapped perfectly in every
condition. A large proportion of these mapped sequence reads were mapped to single genomic
locations and referred to as single-hit reads; the rest were multiple-hit reads. Table S2 shows that

about 12% of perfectly matched sequences were multiple-hit reads. Moreover, when up to two
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mismatches were allowed during the mapping process, we obtained extra ~5% useful sequence
reads in every condition (Table S1). Putting these results together, we found that about two thirds of
total reads in each sample were mapped onto either the BY genome or the RM genome (Table S1).
Detecting errors in the genomic sequences of the two strains

A number of genes with SNPs showed an extreme pattern in which the reads mapped on the SNP
sites were detected only in one strain but not in the other, no matter what sample the data were from.
These exceptional cases could be because these genes were expressed in only one strain or because
the SNPs we identified actually reflected genomic sequence errors. There is also the formal
possibility that a discrepancy arose from a mutation after the divergence of the strains used in this
study and the strains used in the public genomic sequence databases; for simplicity, we called all
such events “reference sequencing errors” instead of “recent mutations”. We examined the genomic
DNA of several of these SNPs by pyrosequencing analysis and confirmed that all the SNPs we tested
were caused by reference sequencing errors. Following the pyrosequencing confirmation of these
reference sequencing errors, we extended our analysis pipeline to examine all the SNPs sites that
might fit the pattern described above. To detect genomic sequence errors in the reference genome
sequences at the SNP sites we identified, we used the following bioinformatics approach.

Our strategy is to identify real error sites in the reference genomic sequences. First, if a site showed
more than 10-fold change in the expression read count between the two strains, or had zero count in
one strain and more than 10 counts in the other, it was regarded as a potential genomic sequence
error site. According to these criteria derived from examining the expression data, 1,490 sites
qualified as putative reference genome error sites. We then verified these sites against our gDNA
IGA-II sequencing data; the data consisted of two channels of hybrid and two channels of co-culture
gDNA IGA-II sequencing. The processing methods for the gDNA data were similar to the methods
described in the section “Mapping IGA reads to the reference genomes” but only exact matches were
allowed and the “wordsize” parameter of Megablast was set to 32 because the length of the gDNA
sequence reads was 40 nt. A potential error site is categorized as either: (1) a real error site in a
reference genome; (2) a non-error site; or, (3) an uncertain site. If the mapped gDNA showed the

same absence of one allele as did the cDNA data, then it was considered a real error site. In this case
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the expression polymorphism is not real but due to an error in the reference genomic sequence. On
the other hand, if the mapped gDNA reads were detected in both strains, the expression signal
observed in the cDNA was considered real. Finally, if there were insufficient gDNA reads mapped on
the site in both strains, we regarded the site as ambiguous (uncertain). Of the 1,490 putative genome
reference sequence error sites, 893, 540 and 57 sites were identified as real error sites, non-error
sites and uncertain sites, respectively. For the 893 error sites, 309 were from the BY strain and 584
were from the RM strain. We then updated our genomic sequence databases for the 2 strains and
removed these 893 error sites from the SNP list. We also removed the 57 uncertain sites from our
SNP list. We then redid all the analysis using the updated genomic sequence databases and the

updated SNP list.

Modeling gene expression as a discrete sampling process
In order to make inferences on read data provided by the [llumina Genome Analyzer, we formulated

our statistical questions in terms of a discrete statistical framework. We sought to frame our
questions, so that we could solve both the normalization problem and the expression parameter
estimation problem by using the binomial distribution. Normalization is required because
differences in total reads between samples occur whenever sampling effort is not evenly distributed
between the samples, either due to design or experimental error. Such differences may be considered
analogous to the systematic intensity differences encountered in comparing two microarrays. Indeed,
some authors even recommend employing methods related to standard quantile normalization
(Bolstad et al. 2003) for count data (Balwierz et al. 2009). Since we decided to model our data as a
binomial sampling problem, using a normalization procedure that rescales the read counts would
discard important information about the variance, which is already encoded in the read counts of a
discrete sampling experiment. Additionally, explicitly modeling noise (Balwierz et al. 2009) for
unambiguous counts derived from a discrete sampling process introduces a concept designed to
account for a physical assay where real sources of noise are well attested, such as detection of light
by analog sensors in scanners that cannot completely avoid light contamination. Given that for our

data, each observed read that can be mapped is clearly derived from an identifiable region, we have
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chosen to abandon legacy frameworks modeled on signal processing insights gained from microarray
experiments. There are reasonable physical rationales for why noise exists in array scanning like:
photons derived from cross hybridizing probes; strayed photons derived from leaked light hitting a
CCD sensor; or photons derived from one probe hitting the part of the sensor devoted to another
probe (Tu et al. 2002). In the case of deep sequencing, it is not clear which sequence reads comprise

the “signal” and which comprise the “noise”.

cis and trans parameter estimation
Consider a measurement of expression read counts for two alleles at the same locus in a single

experiment. We assume that such counts can be viewed as a binomial sample such that the observed
counts are the X, N variables of a binomial experiment having an underlying binomial parameter p.
For a given locus, the parameter p characterizes the proportion of the read counts (X) from one allele
in the total of read counts N from both alleles. This parameter is influenced both by the number of
cells containing each allele and by the relative expression level per cell of each transcript. Let d
represent the ratio of the number of cells containing one allele to the number containing the other.
Let e represent the ratio of the expression level per cell in cells containing one allele to the
expression level per cell in cells containing the other. In this case, the binomial parameter p is:

_ de;
P de;+ I
where j represents the experiment of interest, and, in this study, can be either a comparison of two
alleles measured in the two strains grown in the same culture (the “co-culture” experiment) or a
comparison of those same two alleles measured in an F; hybrid (the “hybrid” experiment).
Estimation of the relative cell density parameter

To eliminate the identifiability problem between the d and e parameters, we first estimate d

independently from genomic DNA with the following maximum likelihood estimator:

= S 1)
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where i indexes each gene in the genome and G is the total number of genes studied. For estimating
the underlying d;, the data considered were from the gDNA extracts from the same co-culture and
hybrid experiments that produced the cDNA for the expression measurements.

There are two assumptions behind using the contrast between the co-culture and hybrid
experiments to investigate cis and trans variation. The first is the observation that all freely diffusing
factors in the hybrid experiment are presented equally to each allele at a heterozygous locus, and
that allele-specific expression differences in a hybrid are due to cis variation only. This assumption is
expressed as follows:

€Hy =€ -

The other underlying assumption is that the allele-specific expression differences in the co-culture
experiment are some combination of cis and trans effects such that, when no difference is observed in
the hybrid experiment and a difference is observed in the co-culture experiment, all of the
differences in the co-culture experiment are attributed to trans. Though such an assumption can be
satisfied through many functional forms of varying complexity, one of the simplest functional forms
is commonly assumed (at least implicitly):

€co = €cisCrans-

In fact, when genes are influenced by only a single mutation, the form above is accurate, as one
parameter is fixed at unity (0 on a log, scale) and the other parameter varies. In this special case,
single mutations of the cis variety would fall along the diagonal of a log: plot of hybrid versus co-
culture, whereas mutations of the trans variety would fall along the axis defined by logz(eny)=0
(Wittkopp et al. 2004; Wittkopp et al. 2008).
Estimating expression parameters

Under the above assumptions, we can examine the hybrid and co-culture experiments in terms of cis

and trans expression parameters écis, €xans by rewriting the binomial py, pco parameters as follows:

b= dyey, ~ d e
Hy — - ’
dyen, +1 dye, +1
dCoeCO _ dCoecisezranx
p Co

Cdoe.,+1 doe.e, +1

Co™ cis~ trans
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Estimating cis
The hybrid experiment can be used to obtain the expectation and confidence interval for the

parameter ec;s from the following equation, using standard maximum likelihood methods:

( cis

We obtain p-values for hypothesis tests using the likelihood ratio test with one degree of freedom

(2)

)NHy =X gy

deXHv’N ) XHy pHyXHy(l_

Hy

pHy

with the null hypothesis ecis = 1.

Estimating trans

All of the information about trans differences is found in the co-culture comparison. However, by
using only co-culture data, another identifiability problem arises where the two expression
parameters ecs and eqqans cannot be distinguished or separated:

N .
dopXeoNeo) = pes (L= pe,) 7 (3

Co

dC()’XC()’N )=L( CH" trans

(eC'o

This problem can be solved by simultaneously considering both the hybrid and co-culture data:

(1= pe,) 7. (4)

cis € trans

N Xy Ny =X py NCU
dH» ’XHy’NHy oeysX oo Ne, ) e pHy) (1 - pHy) X
Hy Co

L{e
Using this formulation, the expectations, the confidence intervals, and hypothesis tests for the
expression parameters can be obtained. This equation provides not only results for the trans
parameters, but also results for the cis parameters that are identical to those from Equation 2.
Correlated errors in estimated expression parameters

Both es and ewans expression parameters depend on the hybrid data, though the cis expression
parameter is independent of the co-culture data. As a result, the expression parameter estimates
obtained from Equation 4 are negatively covarying, which is an important factor when considering
the relationship between cis and trans estimates. When either cis or trans estimates are considered
alone, the estimates from Equation 4 are appropriate (e.g. Figure 1; the cis and trans categories in
Figure 3; Figure 4; Figure 5; and Table 1). However, when interpretations depend on inferences

made simultaneously on cis and trans estimates, this co-variance creates a problem. Comparing

Figure 2B and Supplemental Figure S2B illustrates the negative correlation introduce when the
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errors are correlated. It is thus important to also obtain independent estimates. These independent
estimates are intended for use whenever there is a direct relationship between cis and trans in the
inferences we are making. For example, the inferences presented in Figure 2, and the trans - cis
categories in Figure 3 involve inferences that could be misled by a direct relationship between cis
and trans.

In order to accomplish these goals, we must make sure that data from which cis estimates are made
are independent of data from which trans estimates are made. Thus, we assign half of the hybrid
sequencing data (6 out of 12 total channels) to estimating the cis parameters and the other half to
estimating the trans parameters. In turn, we also obtain two estimates of the cis expression
parameter, one of which is independent of the estimate of the trans parameter and one of which is
not. The following two equations illustrate how we formulate the independent estimates of the cis
and trans parameters (the .1’ indicates the results from one partition of the hybrid data and the ‘.2’
indicates the results from the complementary and independent partition):

Independent estimate of cis

P dHyeHy.l _ dHyecis‘l
Hyl — - >
dyep,,+1  dye,, +1
_ Hy.1 X,,y‘1 NH):.I_XHy.l
L(ecis.l dHy.l’XHy.l’NHy.l) "l x Hy.1 (1 - pHy.l) . 5)
Hy.l
Independent estimation of trans
. dHye Hy2 dHyecis‘Z
Hy2 — - ’
dyep,+1  dye,+1
_ dCoeCo _ dCoecislezmm
oo e +1 d I
COeCD + Coecis.Zetrans +
N Nuva=Xma| N,
_ Hy2 | Xy Hy 274 Hy2 Co Xco Neo—Xco
L(ecis.Z ’etrans dHy.Z ’XHy.Z ’NH_\*.2 ’dCo ’XCo ’NCO) - pHy.)Z (1 - pHy.Z) pCo (1 - pCo) . (6)
XHy.2 XCo

Estimates of cis (ecis1) and trans (euans) from Equations 5 & 6 above are used in place of estimates

from Equations 3 & 4 above in Figure 2 and conclusions related to Figure 2. However, when
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independent inferences are made with regard to the expression parameters, Equations 3 & 4 are

preferred due to their greater power.
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Supplemental Figures

Supplemental Figure S1:

gDNA estimates of d for hybrid and co-culture experiments. The maximum likelihood estimate of d
and its associated confidence intervals are displayed graphically. The boxes indicate the 50%
confidence interval, while the whiskers indicate the 95% confidence intervals. The dark lines in the
middle of the boxes indicate the MLE. The red horizontal line indicates logz(d) = 0, ie, d = 1.
Confidence intervals were established through bootstrapping. (A) The hybrid experiment. (B) The

co-culture experiment.
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Supplemental Figure S2:

Genome-wide allele-specific expression polymorphism in S. cerevisiae. This figure follows Fig. 2 in the
main text, except that the estimates follow Equations 3 & 4. The co-variance between cis and trans is
clearly visible in panel B. The data as summarized in panel D shows the same general patterns
demonstrated in Fig. 2, except that the two “major” categories are moderately affected by the co-

variance between cis and trans estimates.
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Supplemental Figure S3

Following Figure 6, except that the trans hotspot genes were not discarded.
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Supplemental Figure S4

Rejection rates for the null hypothesis for IGA transcriptome data. Each figure shows the p-values for
conducting binomial tests between 2 lots of 6 channels for each experiment x strain combination.
The most notable feature is the excess of p-values near 1, indicating a failure to reject the null
hypothesis. This is due to the conservative nature of the binomial test. Otherwise, there is no
indication that IGA transcriptome data leads to excessive rejection of the null hypothesis when the

data is controlled such that there is no expression variation.
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Supplemental Figure S5

Histograms of identical reads. Each histogram is a different representation of the same probabilities.
The “simple” category is for an expression model that assumes that all genes have uniform
expression and that no sites are more likely to be sequenced than other sites. The magnitudes of
these bins are proportional to a Poisson distribution for k > 0. In a uniform sample of N reads from a
genome of L nucleotides, the probability that a given nucleotide in the genome serves as the start

position for an IGA read k times can be modeled by a Poisson distribution with parameter A = N/L.

The “complex” category is for an expression model that assumes that reads are sampled from
individual genes in proportion to expression levels observed in our actual dataset, but a sampled
read’s position within each transcript is assumed to be distributed uniformly. Because this
distribution cannot be modeled by a simple probability distribution function, as is the case for the
“simple” model, the probabilities were calculated through simulation. The “observed” category is
what we actually observe in our dataset for read counts for particular sequences. (A) Each bin
represents a probability proportional to the number of times a unique read sequence is represented.
Thus, if a unique read is present 1 time, a single count is added to the 1 bin and if a unique read is
represented 5 times, a single count is added to the 5 bin. Thus, the normalizing factor is the total
number of unique reads (as opposed to the total number of reads). (B) Each bin represents a
probability proportional to the number of times a read sequence is represented. If a read is present 1
time, a single count is added to the 1 bin and if it is represented 5 times, 5 counts are added to the 5
bin. Thus, the normalizing factor is the total of all reads, not just the total number of unique reads as
was done for panel A. Distributions for both panels have been scaled so that the probabilities for k >

0 sum to unity.
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Supplemental Figure S6

Diagrams explaining how classifications in the main text are made. The points represent the MLE
values for the (ewans, €cis) coordinate pairs. The ellipses encircling the points represent the confidence
intervals for the expression difference estimates. (A) The expression difference confidence intervals
of genes placed into the “only” or “both” categories must overlap one and only one axis or diagonal.
red: “cis only” category; blue: “trans only” category; gray: “both” category. For the “only” genes, we
have good evidence for variation in either cis or trans, but no evidence for the other. For the “both”
genes, we have good evidence for variation in both, but we cannot determine which of cis or trans is
larger. (B) The expression difference confidence intervals of genes placed into the “dominant”
category must not overlap any of the axes or the diagonals. red: “cis dominant” category; blue: “trans
dominant” category. For these genes, there is evidence for variation in both cis and trans.
Additionally, we have evidence that one of the two is of greater magnitude than the other. (C) The
expression difference confidence intervals of genes placed into the “major” category must overlap
one and only one of the axes and at least one of the diagonals. red: “cis major” category; blue: “trans
major” category. For these genes, there is clear evidence for variation in either cis or trans and
equivocal evidence for the other. For example, for “cis major” genes, the confidence intervals for trans
variation is sufficiently large that they neither reject |logz(ecis)| = |logz(€trans)| nor logz(etrans) = 0. (D)
The expression difference confidence intervals of genes placed into the “ns” category (not significant)

must overlap both of the axes. For these genes, there is no evidence of expression variation.
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A: "only" and "both" categories B: "dominant” categories
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Supplemental Tables

Supplemental Table S1. Statistics of the reads that can be mapped on the genomes

Library Reference % of total reads
genome Misg? Mis 4142
Hybrid BY 62.84 67.05
RM 62.53 66.73
Co-culture BY 62.93 66.73
RM 62.78 66.60

a Perfectly mapped reads
b Mapped reads allowing up to two mismatches

Supplemental Table S2. Proportions of single-hit and multiple-hit reads for each condition

Library Reference % of mapped reads
genome Single2 MultipleP
Hybrid BY 87.81 12.19
RM 88.00 12.00
Co-culture BY 87.06 12.04
RM 87.91 12.09

aSingle-hit reads
b Multiple-hit reads

17
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Supplemental Table S3

Summary of the results of applying the bioinformatics filters to the number of genes in our sample.
The table describes the series of bioinformatics filters applied to the read count data before it was
subjected to statistical analysis. The largest number of genes lost prior to analysis is for genes that
lack SNPs (1,294). Absence of variation in the transcript of interest is the largest challenge in ASE
experiments for very closely related strains.

Gene number Filter criteria
6,604 Genes with UTR information (from Nagalakshmi 2008)
6.520 After discarding genes lacking unambiguous homology and reliable
’ alignment between BY and RM (84)
After discarding genes lacking good match coverage, unambiguous
6,307 " ] 1 1
one-to-one orthology or good "synteny" relationship (213)
6,075 After discarding lowly expressed genes (232)
5,860 After discarding embedded genes (215)
4,566 After discarding genes lacking SNPs in the alignment (1,294)
After discarding genes represented by a non-negligible proportion of
4,442 . . .
reads mapped to multiple genomic locations (124)

18
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Supplemental Table S4:
This table follows Table 1 in the main text, except that the uncorrelated estimates are used instead.

(A) P-value < 2.2x10-16. (B) P-value = 0.01745. (C) P-value = 1.

A:

Polymorphism | Divergence
Cis 248 1,270
Trans | 314 541
B:

Trans Poly. Sig Poly. Nsig

Div.sig | 89 (72.2) | 452 (468.8)

Div. nsig | 225 (242.8) | 1,586 (1,569.2)

C:

Cis Poly. Sig Poly. Nsig

Div.sig | 134 (133.9) | 1,136 (1,136.1)

Div. nsig | 114 (114.1) | 968 (967.9)

Dataset 1 - Dependent Estimates:
The supplemental dataset is a tab-delimited text file. The first line is a header line naming each of the
fields. The following is a list of the fields and a description of its contents:

name: the ORF name following the SGD naming convention;

etrans: MLE for logz(etrans);

ecis: MLE for logz(ecis);

cat: significance category that the genes fall into, following Figure 2 and Supplemental Figure S2;
X.RM.Co: the read counts for the RM allele in the co-culture experiment summed over all 12 lanes;
X.BY.Co: the read counts for the BY allele in the co-culture experiment summed over all 12 lanes;
X.RM.Hy: the read counts for the RM allele in the hybrid experiment summed over all 12 lanes;
X.BY.Hy: the read counts for the BY allele in the hybrid experiment summed over all 12 lanes.

Dataset 2 - Independent Estimates:
The description of Supplemental Dataset 2 follows that of Supplemental Dataset 1 with the following
differences:

X.RM.Hy.1: the read counts for the RM allele in the hybrid experiment summed over the 6 lanes of
sequencing used to estimate e.;s independently;

X.BY.Hy.1: the read counts for the BY allele in the hybrid experiment summed over the 6 lanes of
sequencing used to estimate e.;s independently;

X.RM.Hy.2: the read counts for the RM allele in the hybrid experiment summed over the 6 lanes of
sequencing used to estimate esans independently;

X.BY.Hy.2: the read counts for the BY allele in the hybrid experiment summed over the 6 lanes of
sequencing used to estimate esans independently.
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