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1 DNA sources

1.1 Laboratory lines

Reference and training data is useful in developing a model to infer copy number change using

microarrays. By using the relationship between the probe signal within known mutants and

information about those probes, including their single copy probe intensity and their GC con-

tent, we can predict the behavior of other probes for which we have never observed mutations.

To obtain this information, we chose two strains of D. melanogaster, one to represent the non-

mutant state and one to represent the mutant states, either duplication or deletion. Since the

tiling arrays we chose were designed from the D. melanogaster genome sequence of a fruitfly

line designed by CeleraTM (S1), we chose that line as the single copy reference line. This line

(indicated as stock 2057 in the Bloomington Stock Center Database) is known by the genotype

y1ocR3.2; Gr22b1Gr22d1cn1CG33964R4.2bw1sp1; LysC1labR4.2MstProx1GstD51Rh61.

To obtain data for the duplicate state, we chose a line from the aberration collection from

FlyBase (S2) harboring a relatively large (∼200 Kb) segment translocated duplication called

z1w1118; Dp(1; 2)w+70h, also designated as stock 5409 in the Bloomington Stock Center Database.

The genotype of this line indicates that the ancestral paralogous locus derives from the X chro-

mosome in the cytological interval 3A7-8;3C2-3. The duplicate copy was inserted into the left

arm of chromosome 2 near cytological band 31A3. Notably, the ancestral locus also harbors

the w1118 mutation, which is a partial deletion, including part of the first exon and the promoter

region 5′ of the white (w) gene.

1.2 Natural lines

We sampled natural lines from diversity center of D. melanogaster in Africa (S3–S5). The

lines used, their locations, and their sources are indicated in Table S1. The samples are all

sub-Saharan in origin and range from as far northwest as Cameroon and as far southeast as
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Zimbabwe, as indicated in Fig. S1.

2 Microarray data collection and lab protocols

The strategy that we employed for detecting quantitative differences in DNA copy number was

through DNA-DNA hybridization between a genomic DNA template extracted from natural

lines and oligonucleotide DNA probes affixed to AffymetrixTM tiling arrays. In order to obtain

the template DNA appropriate for hybridization to the 25 bp probes present on the AffymetrixTM

arrays, we extracted genomic DNA from virgin female flies and fragmented it into 50-200 bp

fragments using DNase-I.

2.1 DNA preparation

From each line we extracted 20 µg of gDNA from three replicates of 30 flies using the Puregene

DNA extraction kit (30 flies) with an additional phenol-chloroform extraction step. For each

sample to be hybridized, 10 µg of gDNA was partially fragmented using DNase I, then end

labeled with biotin-ddUTP using terminal transferase from Enzo Life SciencesTM following

previous protocols developed in the Long laboratory (S6, S7).

2.2 Labeling

The biotinilated DNA was then hybridized to AffymetrixTM full genome tiling arrays. Subse-

quently, the biotin on the chips was made to bind streptavidin, which was then bound by an anti-

streptavidin antibody with additional biotin molecules attached. A streptavidin-phycoerythrin

conjugate was then bound to these biotins, which emits light when excited by the scanner’s laser

which was subsequently detected following the standard AffymetrixTM procedure (S8).
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3 Array Platform

The AffymetrixTM genome tiling array for D. melanogaster is built around a 5 µm platform

which permits a square grid of 2,560 probes on a side to be placed onto a silicon wafer. Each

probe is comprised of a 25 bp oligonucleotide synthesized directly onto the array. The resulting

6,553,600 probes are partitioned into a number of categories, mainly comprised of pairs of

probes whose sequences uniquely match a stretch of genome at either 100% identity or with a

single mismatch at the thirteenth basepair. Each pair is situated in adjacent grid positions, with

the perfect match probes forming even rows and the mismatch probes comprising the odd rows.

3.1 Reannotation of AffymetrixTM Drosophila genome tiling array
3.1.1 Mapping the probes to the genome

Because the original microarray design was finished before release 4 of the genome was pub-

lished, reannotation was undertaken. In order to map the probe positions to the genome, all

6,553,600 probes were used as queries against the D. melanogaster release 4 (Flybase) genome

with Megablast (S9) with a word size of 12. This type of search guarantees successful location

of homology maintaining at least 15 (word size + 3, see S9) consecutive perfect matches. As a

consequence, the search results are reliable only for location of perfect matches to the genome.

Mismatches present in any of the 5 middle basepairs of a putative match to the probe would re-

sult in an alignment without the required 15 consecutive identities for a guaranteed hit, though

some hits are occasionally identified.

3.1.2 Annotation of probe properties

Each probe binds labeled DNA, which then emits light detectable by a scanner. It is not nec-

essarily true that the template DNA bound to the probes has the same sequence as the probe at

the coordinates being measured by the scanner. In fact, some probes have the property that they
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bind DNA very non-specifically while others are quite specific. The GC content is an important

factor in determining the extent of this cross hybridization in addition to the strength of normal

hybridization.

4 The Modeling Framework

Due to both heterogeneity in the composition of the probes necessary to interrogate different

parts of the genome and due to experimental variation in microarray data, inferences upon single

probes in isolation are quite noisy. With replication however, not only can Single Feature Poly-

morphisms (SFPs) be identified (S10), so can CNPs. Because the CNPs span multiple probes,

it is desirable to utilize spatial information to improve the quality of inferences drawn from

probe data. To address these issues, we have chosen to use Hidden Markov Models (HMMs) to

analyze the array data (S7, S11, S12). HMMs have the following advantages:

1. spatial information from surrounding probes contributes to the inferences at particular

positions as a result of the Markov property;

2. the model parameters can be interpreted as the probability by which mutation states

switch between each other, which is informative about rates and sizes;

3. the output of the model permits straightforward decoding schemes that can identify re-

gions of the genome likely involved in copy number variation.

4.1 Definition of Terms

We first consider the genetic unit, in this case a chromosome, which is a sequence T positions

long. Each position is indexed by t such that t ∈ [1, 2, . . . , T ]. Each chromosome is associated

with R replicate observations, which can be used to infer the mutational state π at position t. In
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this framework, our goal is to infer the mutational state sequence Π = π1, π2, . . . , πT with an

HMM based on replicate sequences of array hybridization data, X . From the perspective of the

model, the states are said to be hidden, as they must be inferred from data that does not directly

reveal them. In the model, there are N possible hidden states, indexed variously by i, j, k. As

a consequence, i, j, k ∈ [1, 2, . . . , N ]. The states at positions t − 1, t, t + 1 are described by

the following: πt−1 = i, πt = j, πt+1 = k. We have adopted the convention that the state at

positions (t− 1, t, t + 1) are indexed by (i, j, k) respectively (S13).

The observed data X were organized in a matrix of quantile normalized (S14) and log trans-

formed intensity values representing all chromosome positions replicated R-fold. Thus, as data,

we have access to an (R × T ) matrix of observations for each line, where R is the number of

replicate chips. From this matrix, we compute a sequence of means of replicate sets along the

entire chromosome, X = x1, x2, . . . , xT . We also computed a sequence of standard deviations

for the mean, S = s1, s2, . . . , sT . For each line, the probes exhibiting the highest 2.5% standard

deviations were dropped from the matrix. To guard against artificially estimating a very low

probe standard deviation due to few replicate observations, a small constant s0 was added to

each standard deviation as a baseline (S15). See the Section 5.1 for details.

4.2 Parameter Estimation
4.2.1 Emission Distributions

There are two classes of parameters in the HMMs we used. The first, or the emissions matrix

E, is an (N × T ) matrix of probability functions. The form of the functions depends on the

problem being modeled. Because we formulated our question as the difference in log intensity

between a sample from a reference strain and a sample from a natural strain, the probability

functions were continuous and can be described by statistics that follow t-distributions. For

each state, we obtained a (1× T ) matrix of t-statistics of the following form:
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Ts =
(X1 −X2)− (MMutant −MReference)√[

(R1−1)S2
1+(R2−1)S2

2

R1+R2−2

] (
R1+R2

R1R2

) ∼ tR1+R2−2 (1)

where the subscript 1 denotes the natural line and the subscript 2 denotes the reference line.

The upper case of the statistics Ts, X, S indicate that they are the full chromosomal sequence

of statistics for each replicate set for natural and reference lines. Of all of the quantities in the

equation above, only the (MMutant −MReference) term (i.e. ∆M ) cannot be calculated directly

from the data. The expected log difference (for ∆M ) must be estimated either from a training

dataset or from the data using an EM, MCMC, or similar approach. This issue will be discussed

in the following section. Except for estimating the effect of mutation, or ∆M , the emissions

probabilities is completely specified as soon as the data from the natural and reference lines are

collected. In the case of single copy state, it can reasonably be said that ∆M = 0, so in fact,

all of the probabilities for the single copy state are specified before estimation of ∆M for the

mutant states and follow a simple t-distribution with R1 + R2 − 2 degrees of freedom.

4.2.2 Effects of Mutation on Probe Intensity

In order to estimate the effect of duplication or deletion on the intensity of probes, we employed

a strategy using the intensity measured for known states (single copy, duplicate, and deleted)

in order to train a model that predicts the response of any probe in the genome. Because the

individual properties of each probe were very important in determining the signal strength and

the change in signal caused by mutation, factors that predict these variables are important to

identify. Since the most important determinant of change in signal strength is likely to be how

strongly the labeled genomic DNA anneals to the probes on the chip, we have identified two

important variables to predict this quantity. First, we estimated the strength of hybridization of

each probe directly by measuring the hybridization intensity of the known single copy line. In
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order to estimate the affinity of hybridization, we used GC content as a proxy. We then used

these variables as predictors of intensity of mutant probes in a linear regression. The regression

is of the form:

y = β0 + β1x1 + β2x2 (2)

where y is the intensity measured from probes known to be either duplicated or deleted, x1 is

the intensity of those probes in the single copy genome and x2 is the GC content of the probe

and the β terms are regression coefficients.

4.2.3 Transition matrix

The transition matrix A of an HMM describes the probability of leaving one state and entering

another, and determines the expected sizes of copy number variation states. In order to estimate

transition matrices for the genome which allow for regionally high or low copy number vari-

ation, we fit the maximum likelihood parameters for A in overlapping sliding windows across

the genome using the Baum-Welch algorithm (S11, S12, S16). The windows were chosen to be

700 probes long, with the tiled central portion being 400 probes and the overlap of each edge

being 150 probes. We performed the estimations such that the posteriors from the middle of

each window was contributed to the final inference for posteriors, while the overlapping edges

were used to avoid edge effects of the HMM. Thus all middle regions were tiled end-to-end

across the genome, overlapping by the edges of the windows.

5 Calling mutations

5.1 Smoothing

In order to reduce false positive rate, we tuned the smoothing parameter (which we here call s0)

which we added to the probe standard deviations by an amount sufficient reduce the noise level

in the posterior calls. We measured noise as the proportion of probes on a chromosome falling
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between a posterior probability of 0.05 and 0.1. For duplicates, we chose s0 such that the noise

was 0.18%. For deletions, we chose s0 such that the noise was 0.03%.

5.2 Decoding

Upon obtaining posterior probabilities, we called regions exhibiting runs of high posterior prob-

abilities as mutations. To do so, we require the run of probes satisfy the following criteria:

1. the regions exhibiting runs of probes exceeding a threshold of 0.4 posterior probability

are first identified;

2. these mutation calls are joined if the distance between them is less than 3 Kb.

5.3 Definition of genomic context

The dataset of CNPs was divided into four mutually exclusive categories according to the ge-

nomic annotation of the region mutated. The four categories are:

1. intergenic CNPs;

2. intronic CNPs;

3. exonic CNPs;

4. CNPs encompassing complete genes.

For the following description, we reference release 4.3 of the D. melanogaster genome. A

CNP was classified as intergenic if it did not overlap a known gene structure, including both

protein-coding and non-coding genes. A CNP was classified as intronic if it was contained

entirely within an annotated intron in all known transcripts of that gene. If a CNP overlapped

sequence that is sometimes transcribed and sometimes removed by alternative splicing, it was
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considered exonic and not intronic. Thus, the exonic class includes all CNPs that overlap with

any exonic sequence, though they need not overlap exon sequence exclusively. For example, a

CNP overlapping part of an exon and part of an intron was classified as exonic. On the contrary,

the intronic and intergenic categories required that the CNP falls entirely within intronic and

intergenic sequences, respectively, whereas the exonic category could also overlap both inter-

genic and intronic sequences in addition to exonic sequence. CNPs that contain complete gene

structures were classified seperately from the exonic category. Non-coding and coding exons

were both considered as exonic. The number of CNPs overlapping exclusively non-coding ex-

ons was very small since the majority of CNPs in our dataset overlapped non-coding exons also

overlapped coding sequence.

6 Evaluation of CNP dataset quality

We evaluated the quality of the CNP calls made by our model by conducting PCR-based assays

on a subset of mutations. Here, we discuss in greater detail the results of the PCR assays and

their implications for the overall evaluation of our map of CNPs. We also discuss how well our

model can predict the true boundaries of a mutation event and how well the model estimates the

true frequency of a CNP in the populations studied.

6.1 Evaluation of the duplication dataset
6.1.1 Duplication calls

In order to confirm predicted duplications, we limited ourselves to the most common mode of

duplication, tandem duplication. Our assay relied on the proximity of redundant copies created

by tandem duplication. The assay requires the design of two divergent PCR primers located

within the predicted boundaries of the putative duplication. With respect to a genome contain-

ing only a single copy of the focal region, the primers should be present only in a divergent
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configuration. As a result, no amplification should be possible. In the event of a tandem dupli-

cation (Fig. S2), the primer configuration changes allowed the primers to become convergent,

making amplification possible. One practical limitation of this assay is based on the ability of

Taq polymerase to amplify large regions. Due to the occasional presence of spacers of unknown

length between tandem copies or if there was a large underestimation of the true size of a dupli-

cation, the PCR products were sometimes too large to be amplified, resulting in false negatives.

Furthermore, dispersed duplications, such as translocated duplications and retroposed dupli-

cates, could not be confirmed by this method, providing another source of false negatives. We

accepted the confirmations as ascertained via PCR as true and therefore called such hybridiza-

tion signals false positives. As a result, the false positive rate inferred from these experiments

was an over-estimate of the true rate, making our inferences conservative.

Another caveat is that this assay imposes a limit on the size of the duplications we can con-

firm. Because there is some uncertainty associated with the exact location of the boundaries

of the duplications, the pair of divergent primers has to be designed well within the predicted

limits. One important consequence is that the size of the duplications tested was higher than

that of the entire dataset of duplications predicted by our model. The mean size of the duplica-

tions present in the confirmation set was 5,031bp (median 3,332bp) while the mean size of the

duplications present in the entire dataset was 1,149bp (median 367 bp).

We performed PCR assays on a set of 74 duplications and we obtained a positive confir-

mation for 64 of them (86%). We then asked if there were any differences between the set

of confirmed duplications and the set of mutations that we considered to be false positives (a

conservative estimate given the first caveat of this approach). We compared both sets in terms

of size, predicted frequency in the populations and genomic context. We found no significant

differences between the two sets for all of the above comparisons (P > 0.05). There were

no size differences between the set of duplications with a positive PCR result and those with
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a negative. There were also no differences in terms of the genomic context those duplications

overlap, i.e. intergenic, intronic or exonic regions. We included in our confirmation set duplica-

tions predicted to be present in only one population (singletons) and duplications predicted to

be present in at least two populations (non-singletons). There were 7 duplications predicted to

be in at least two populations that we were unable to confirm. That the model predicts the same

mutation at least two times independently should add confidence in that call. Hence, we could

interpret the absence of confirmation of a non-singleton mutation as suggestive that our PCR

assay is indeed conservative and that a fraction of the mutations we were unable to confirm may

actually correspond to true mutations.

6.1.2 Duplication boundaries

We sequenced the breakpoints of 48 of the 64 confirmed duplications in order to determine

how well our model predicts the boundaries of the mutations. The original data comparing the

predicted and experimentally determined boundaries can be found in Table S4. The resolution

of the model was limited by the probe size, which is 25bp. We calculated for each boundary

(48 x 2 = 96 breakpoints) the difference between the model prediction and the experimental

determination. The median absolute difference is 98bp and the mean 738bp. We overestimated

the limits of duplications 69% of the times (66/96 breakpoints).

6.1.3 Duplication frequency

We screened by PCR a subset of the confirmed duplications in all 15 natural populations. The

model predicted the existence of 48 PCR bands and our screening revealed a total of 57. There

was a complete agreement in terms of the lines predicted to have duplication and those that

were confirmed to have it. Our model failed to identify 16% of all duplications.

6.2 Evaluation of the deletions dataset
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6.2.1 Deletion calls

For this assay, we designed two convergent PCR primers located outside the predicted bound-

aries of the putative deletions. Since the comparison between a line containing a polymorphic

deletion and a line lacking that deletion leads to a PCR fragment length polymorphism, this

experiment is usually sufficient to confirm a deletion. At times, no fragment length polymor-

phism was detected in comparing positive control and the diagnostic experiment. Subsequent

sequencing has sometimes shown that when this happens, the physical model is not wrong, but

rather the biological interpretation is inappropriate. In these cases, the actual probes predicted

by the model to be absent were in fact absent from the band, though other sequence was present

instead.We sequenced all bands indicative of deletion and also most bands indicative of ab-

sence of deletion (see discussion below). Out of a set of 81 predicted deletions we confirmed

43 (53%). This corresponds to a very high rate of false positives, 47%. We then investigated the

differences between the sets of confirmed and false positive deletions in terms of size, predicted

frequency and genomic context.

False positive deletions were significantly smaller than true deletions being covered by a

smaller number of probes (Wilcoxon rank sum test, P=0.022). This difference disappears if we

considered only those mutations predicted to be larger than 200bp. Of the 81 deletions tested,

42 were predicted to be singletons while the remaining 39 were predicted to be non-singletons.

We compared the sets of confirmed and false positive deletions in terms of the proportion of

singletons and non-singletons. Surprisingly, we found that the set of false positives was en-

riched with non-singletons (Fisher’s exact test, P=0.0146). While the assay used to confirm

duplications only gave us a conservative estimate of the rate of false positives, the assay for

deletions allowed us to determine unequivocally the true false positive rate. As discussed for

the duplication confirmation set, when the model predicts the presence of a given mutation

at least two times independently that gives us more confidence that the mutation is real. As
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a consequence, the enrichment of non-singletons in the set of false positives was puzzling.

We examined in more detail the sequence data collected from the set of false positives. We

found that for approximately half of the false positive deletions there were either SNPs (Single

Nucleotide Polymorphism) and/or small indels (insertions/deletions) that overlapped with the

probes present in the array.

Since our probes were only 25bp long, a SNP or an indel impact the probe signal in a

manner similar to a deletion. If the sequence variation present in a haplotype mimics the hy-

bridization intensities characteristic of a deletion, all lines that have that same haplotype will

consistently produce the same deletion prediction (S10). As a consequence, several independent

predictions, while perhaps indicative of a mutation of some sort, is not necessarily exclusively

evidence for presence of a deletion. Given the effect of sequence variation in the predictions

made by our model, we investigated if such variation was also introducing a bias in terms of

the genomic context of the region mutated. This might be relevant if, for example, SNPs were

disproportionately more or less common compared to CNPs in certain regions compared to oth-

ers. Therefore, we conducted contingency analysis on the number of deletions confirmed as

true and those confirmed as false in relation to genomic context. We performed two types of

genomic context classification. In the first we divided deletions into those overlapping exonic

sequence and those overlapping non-exonic sequence. In the second we further divided those

deletions that overlap non-exonic sequence into deletions overlapping intergenic sequence and

those overlapping intronic sequence. Contingency analyses performed with the two classifica-

tions revealed that the false positive group was not enriched for any type of genomic context.

There were not significantly more deletions overlapping exonic sequence in the confirmed set

than in the set of false positives.

6.2.2 Deletion boundaries
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We collected sequence data for the breakpoints of 38 deletions. The goal was in order to de-

termine how well our model predicts the limits of deletions. The original data can be found in

Supplementary Table S4. Again, as was the case for duplications, the resolution of the model

was limited by the probe size of 25bp. We calculated for each boundary the difference between

the model prediction and the experimental determination. The median absolute difference is

32bp and the mean 369bp. From this we found we extend the breakpoint for deletions too far

50% of the times (38/76 breakpoints).

6.2.3 Deletion frequency

We screened by PCR 20 of the confirmed deletions in all 15 natural populations. The model

predicted the existence of 48 PCR bands. Our model does not differentiate between deletions

homozygous for a population or heterozygous. Moreover, our model was trained with hy-

bridization data collected from homozygous deletions so it will preferentially identify these.

The PCR screenings revealed that a subset of the deletions screened were heterozygous in some

populations. If only homozygous deletions are considered the model failed to identify 9 dele-

tions (16%). If we also consider heterozygous deletions then the model failed to identify 23 of

the 71 bands present in the screening (32%).

6.3 Estimating the false negative rate

In order to estimate the false negative rate, we screened CNPs predicted by our model in all

lines, whether or not it was predicted in that line. We calculated the false negative rate to be at

least 16% for duplications and homozygous deletions and 32% for heterozygous deletions. We

confirmed duplications calls for many values of the smoothing parameter (Section 5.1). The

model here described is the one that best recapitulates the experimental data. However, this

model failed to predict several CNPs that were predicted by other models. These calls have
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also been figured into the error rates. In total we looked at 105 putative duplications of which

80 were experimentally verified. This translated into 16 verified duplications that our model

failed to identify. For deletions we looked at a total of 167 putative mutations of which 70

were confirmed to be real deletions. This translates into 27 verified deletions that appear as

false negatives in our dataset. Even though these numbers only provide us with a very biased

rough -estimate of the false negative rate they suggest that the latter can be potentially very

high. Hence, the numbers presented for the amount of copy-number variation in the D. melan-

ogaster genome despite the high rates of false positives (especially for deletions) may actually

correspond to a considerable underestimation of the true number of mutations.

As a final note, we reiterate that small probes (like the ones used in this study) are strongly

affected by variation at the sequence level. In our study this seems to be particularly true for

deletions where sequence variation decreased the hybridization intensities in a manner similar to

that of actual deletions. This motivates the development of models that are able to take into ac-

count sequence variation. This observation also cautions against concluding that non-singleton

mutations are verified CNPs, because sequence variation can produce other polymorphisms that

are not CNPs yet still give array signatures largely consistent with copy number polymorphism.

6.4 Polarizing duplications

Because tiling array probes are designed by Affymetrix to avoid redundancy in the reference

genome, they are all single-copy. In fact, we manually annotated the probes according to Re-

lease 4 of the genome assembly (Section 3.1), removing a small handful of probes that were

redundant under release 4 of the annotation, but were thought to be unique when the chip was

designed. Thus, we were forced by the platform to limit our inferences on copy number changes

to those with variation in non-redundant portions of the reference genome. In fact, this limita-

tion introduces a strong ascertainment bias, discussion of which is treated in Section 7.2.
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Here we focused on polarizing the CNPs we were capable of ascertaining. In this context,

our use of the term “deletion” refers to a change in copy number from a diploid copy-number of

2 in the ancestor to a diploid copy-number of 0 (Fig. S3). Our use of “duplication” in turn refers

to a change from 2 to 4 (Fig. S3). A third important process in copy number evolution is the

loss of ancestral duplicates, such as occurs by the deletion of an entire locus that was previously

duplicated, or a change in diploid copy-number from 4 back to 2 (Fig. S3). Confusingly, this

process is also usually referred to by the generic term “deletion”.

To remove the ambiguity of these two terms for deletion, we instead refer to “unique dele-

tions” and “redundant deletions”. As a consequence of these clarifications, “unique deletions”

(change from 2 to 0) and “unique duplications” (change from 2 to 4) are unambiguously distin-

guishable from each other. Our study did not attempt to explicitly treat “redundant deletions”

(change from 4 to 2), although these mutations may be a confounded with “unique duplications”

(change from 2 to 4), at least in principle. Such multiple hit scenarios (an older duplication fol-

lowed by redundant deletion), while certainly important to the long-term fate of duplications,

are much less important on the timescale of polymorphism. Indeed, we found empirically that

such multiple hits are very rare if not entirely absent in our dataset, even for timeframes extend-

ing as far as the D. melanogaster and D. yakuba split.

To demonstrate this, we first determined whether any of our mutations have evidence for

being ancestral duplicates. We used blastz and axtChain software (S17) to screen our entire du-

plication dataset for redundancy in the D. simulans and D. yakuba genomes. Our methodology

requires the following three criteria be met for any duplicate to be considered ancestral:

1. At least two hits are present in either D. simulans or D. yakuba (i.e. paralogy exists);

2. Paralogs are aligned over at least 40% of their sequences (i.e. the hits aren’t extremely

short);
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3. Paralogs must show 70% identity in the aligned region (i.e., at least some probes remain

between aligned regions).

We found that at most 109 duplications show such evidence for the entire dataset (80 for

the 10 lines from population 1), most of which were sufficiently divergent to ensure that they

don’t share more than a handful of array probes preserved between them at most. In fact,

70% identity was a very low threshold for polymorphic duplications, and would identify many

paralogs that exceed the age possible for polymorphisms. However, in order to be conservative,

we allowed this relaxed threshold. Making the threshold more stringent greatly reduces this

number, ameliorating the potential bias from minor to nearly absent. Since this number was

so low, for the purposes of SFS analyses, we have excluded these mutations in a conservative

attempt to ensure that we took all possible precautions to avoid the potential bias we describe

above.

However, examining the SFS of these mutations definitively rejects the hypothesis that a

substantial proportion of them are “redundant deletions” instead of unique duplications. Fig.

S4 shows the full SFS for all putative “redundant deletions”. Notably, the largest frequency class

was the singleton class, while the 9-tupleton class contained no observations. If a substantial

proportion of these mutations were redundant deletions, then we would expect to have mis-

polarized that subset, because the derived mutation would be the one-copy version not the two-

copy version. If that were true, then the majority of mis-polarized mutations should have been

singletons or doubletons that were mistakenly put into the 9-tupleton or 8-tupleton classes,

respectively. Instead, we observed only a single mutation in a combination of both of those

classes combined, an observation that is not compatible with ancestral duplication. Under these

circumstances, one cannot even assert that the relaxed threshold for paralogy (70% identity)

is responsible for swamping out the signature of putative redundant deletions, as there appears

to be no signature of mis-polarization at all. If mis-polarized mutants were present, there was
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evidence for at most only one doubleton and no singletons. Indeed, this SFS evidence strongly

rejects the “redundant deletion” hypothesis for our dataset.

6.5 Physical interpretation vs. biological interpretation

It is important to note that many genuine false positives from the perspective of copy number

variation will actually be a result of our imposition of a biological interpretation on a model

derived from physical data. For example, we usually describe the duplicate state probability

as the chance that a given probe is drawn from a duplicated chromosomal region. However,

a more accurate description would be, “Relative to the other N − 1 states, the hybridization

intensity of light observed from probe t is consistent with the intensity of light expected from

known state i with probability Pt,i”. This description highlights a few limitations of the simple

model we use. First, the posterior probability is always relative to the other states included in

the full model. For example, if a region were triplicated, the best state in our model to describe

such a mutation would be a two-fold increase (i.e. duplication) although the actual change was

three-fold. Thus, we expect there to be some results that are false positives biologically, even

though they are actually true positives with respect to a physical interpretation of the model. The

most compelling example of confounding physical interpretation with biological interpretation

involves regions in the genome that exhibit unusual variability at the nucleotide level rather

than in copy-number. Some relatively small chromosomal regions in one individual from a

population can exhibit little to no homology to the same region in other individuals, but no

apparent loss of DNA is actually observed. As a result, the sequence in such regions no longer

contains the DNA oligomers comprising the probes in the array. In such cases, a mutation or

series of mutations has clearly occurred, though the PCR assay indicates that the size of the

region has not in fact decreased.

Such cases, while not relevant to our particular biological questions, are still important to
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acknowledge. First, this limitation is important to consider when evaluating the results of the

method. Second, acknowledging that many biological false positives are ‘real’ in at least a

physical sense lends credence to the statistical performance of the model. On the one hand,

it is unfortunate that the most convenient method to detect copy number variation also detects

changes that are unrelated to copy-number changes at the locus of interest. In another sense

however, it is comforting to know that, given that these confounding factors do exist, the model

is capable of identifying them. Third and finally, acknowledging these limitations motivates

modifications of the model. In some cases, it might actually be possible to refine the model

such that we can identify such confounding factors. Of course doing so would require there

to be some observable difference in the size, frequency, or intensity of such confounding mu-

tations. In any case, it is clear that hybridization signals allow many biological variants to be

distinguished, both from CNPs and otherwise.

7 Detecting natural selection

Because it has been demonstrated that various populations of D. melanogaster have experienced

demographic histories sufficient to influence the site frequency spectrum (SFS) (S3, S18–S21),

it is conceivable that our sample too exhibits a skew towards rare variants in the SFS of all

genomic regions with respect to the standard neutral model (SNM), even in the absence of

natural selection. As a result, standard population genetics approaches with Tajima’s D (S22)

may show evidence for violation of the SNM even in the absence natural selection. Moreover,

ascertainment biases and errors in calling mutations (false positives and false negatives) will

lead to further violations ofthe assumptions of the SNM. In order to correct for these effects,

we must estimate the influence of population structure, demography, bias and error on our data

and determine what inferences can be made after such forces are accounted for.
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7.1 Population structure and demography

In order to estimate the effects of population structure and demography, we collected a set of

600 synonymous SNPs, sites thought to be evolving under the least constraint. These SNPs were

collected from 46 loci located in all major chromosome arms and away from pericentromeric

regions (Fig. S5). These loci were chosen from two previous studies that also used silent SNPs

as neutral variants (S23, S24 & Table S6). Each locus consisted of a 650-750 bp fragment that

was amplified in a single male in all 15 lines used in this study. Contig assembly was performed

with Phred Phrap Consed (http://www.phrap.org/phredphrapconsed.html) (S25–S27). D. sim-

ulans or D. sechellia orthologous sequences were used as an outgroup and alignments of all

sequences were done with ClustalW. Homozygous and heterozygous SNPs were identified with

PolyPhred (http://droog.mbt.washington.edu/PolyPhred.html; S28).

7.1.1 Population structure

We detected population structure by applying the software STRUCTURE (S29) to our silent

SNPs in our 15 samples. The results from STRUCURE indicate the presence of two popula-

tions among our 15 individuals. Of our 15 lines, 10 individuals were derived almost entirely

from population 1 showing nearly no admixture with population 2, 3 were derived almost en-

tirely from population 2 showing nearly no admixture with population 1, while the genomes

of two individuals were drawn predominately from one population or the other, but with some

evidence for low levels of admixture between the two (Fig. S6). Notably, models positing

either only one population or more than two populations were many orders of magnitude less

likely than the model for two populations [1 population: ln (L2/L1) > 47; 3 populations:

ln (L2/L3) > 1, 847), Table S6]. As a result, we rejected the hypothesis of 1 population in fa-

vor of a hypothesis of 2 populations. In order to eliminate the signature of population structure

from our subsequent SFS analyses, we conducted all SFS analyses on the subset of original
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sample comprised of 10 individuals from population 1.

7.1.2 Demography

In order to account for demography, we applied the procedure of S30 to the synonymous SNPs

among 10 individuals from population 1 above to estimate the demographic parameters of two

classes of models; a 2-epoch model and a 3-epoch model (Fig. S7).

For the 2-epoch model, we explored the likelihood surface for τ and ν. The parameter τ is

the time since the previous epoch in terms of the number of generations scaled by 2Ncurrent.

The parameter ν is the relative change in population sizes
(

Npast

Ncurrent

)
. We explored τ in the

range of (0, 5] and log10(ν) in the range of [−2, 2].

For the 3-epoch model, there were 4 parameters; τ1, τ2, ν2, ν3. The subscripts refer to the

epoch being referenced, with epoch 1 being the current epoch and epoch 3 being the oldest

epoch. In this context, τ1 is the duration of the first epoch (or the amount of time elapsed since

epoch 2) and τ2 is the duration of the second epoch (or the amount of time elapsed between

epochs 1 and 3). The parameters ν2, ν3 refer to Nepoch 2

Nepoch 1
and Nepoch 3

Nepoch 1
, respectively. The parame-

ters for the 3-epoch model were explored for the same ranges as those for the 2-epoch model.

Neither scenario provided sufficient evidence to reject the null hypothesis of a standard

neutral model at equilibrium. The MLE for the 2-epoch model fails to reject with P = 0.39

while the MLE of the 3-epoch model fails to reject at a P = 0.07. As a result, we used the

standard neutral model without demography as the null hypothesis in tests of selection below.

7.2 Estimating the effects of ascertainment bias

The SFS may also be influenced by ascertainment bias. Because tiling array probes are designed

by Affymetrix to avoid redundancy in the reference genome, they are all single-copy. In fact,

in updating the annotation of the probes, we discarded the few remaining probes on the chips
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that the release 4 genome assembly indicate are redundant. As a result, we were forced by the

platform to limit our inferences on copy number changes segregating in non-redundant portions

of the reference genome. Similarly, because deletions segregating in the reference genome are

not present on the chip, we cannot assay those deletions. As a result, using microarrays creates

a strong ascertainment bias. In order to correct for this, we propose the following model of

ascertainment bias.

Given m = n + 1 individuals (n experimental lines and 1 reference line), no mutations

falling in the reference line can be ascertained. As a result, the influences of ascertainment bias

on the the ith frequency class of the SFS can be modeled as follows:

E [yi] = S
E [xi]

m−i
m∑m−2

i=1 E [xi]
m−i
m

, i ≤ m− 2 (3)

E [xi] is the expectation for the ith frequency class of the SFS under a particular model, in

this case as described (S30) above. E [yi] is the expectation for the ith frequency class of the

SFS after incorporating ascertainment bias. The numerator is proportional to the probability of

a mutation being absent in the reference line. Thus, high frequency variants are less likely to be

absent in the reference line than low frequency variants. As a result, the ascertainment biases

cause a systematic under-sampling of high frequency variants. The S term is the total number

of observed sites. The denominator and S terms are normalization factors ensuring that:

n−1∑
i=1

E [yi] =
n−1∑
i=1

E [xi] = S (4)

7.3 Estimating the effects of error

Because false positives and false negatives also influence the SFS we observe, we also modeled

their effects. First, we modeled the influence of false negatives. Under a model of error, the
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observed ith frequency class of the SFS was composed of the true ith frequency class mutations

not affected by the false negative rate and all of the mutations in higher frequency bins effected

by the false negative rate. For example, in a sample of 10 individuals, the observed 7th frequency

bin would be composed of the sites from the 7th mutation bin not influenced by false negatives

plus the number of 8th frequency class sites where exactly one was effected by false negatives

plus the number of 9th frequency class sites where exactly two lines were effected by false

negatives. If we assume that the error rate was independent, this can be modeled as a sum of

binomials:

ETP [zi] = E [yj] B (0, pFN) , 1 ≤ i ≤ n− 1 (5)

EFN [zi] =
n−1∑

j=i+1

E [yj] B (j − i, pFN) , 1 ≤ i ≤ n− 1 (6)

Where ETP [zi] is the expected number of true positives observed after error in the ith frequency

class, EFN [zi] is the expected number of false negatives observed after error in the ith frequency

class, B (k, p) is the binomial distribution, and pFN is the false negative rate.

When calculating our empirical false positive rate, we used the following formulation:

pFP =
SFP

SObserved

=
SFP

STP + SFP

(7)

Where FP represents false positives, and TP represents true positives. Rearranging, we obtain

the expected number of false positives:

EFP = SFP = STP
pFP

1− pFP

=
n−1∑
i=1

E [xi]
pFP

1− pFP

= S
pFP

1− pFP

(8)

Finally, we assume that false positives are added only to the singleton category (i = 1). As
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a result, our final correction for error becomes:

E [zi] =


S EFP +ETP [zi]+EFN [zi]

EFP +
∑n−1

i=1
(ETP [zi]+EFN [zi])

, i = 1

S ETP [zi]+EFN [zi]

EFP +
∑n−1

i=1
(ETP [zi]+EFN [zi])

, i > 1

(9)

We make two simplifying assumptions above, namely that false negatives are independent

and that false positives contribute exclusively to the singleton category. The first assumption

causes a strong reduction in the frequency for large i compared to smaller i while the second

results in an increased singleton caterory. Since the consequences these assumptions mimic

the effects of purifying selection on the SFS, they make purifying selection more difficult to

infer. Thus, it is conservative to make such assumptions. Relaxing the assumptions, in addition

to being much more complicated, would result in a less conservative estimate of the influence

of error on the SFS. One essential caveat of this approach is that it is not conservative with

respect to positive selection. If the ascertainment bias and bias introduced by error is weaker

than we assumed, then we biased our results towards detecting positive selection. As a result,

we urge caution to any who attempt to ascertain positive selection with the shape of the SFS in

the presence of the types of biases we describe here.

Finally, we note that the influence of error on the expected SFS becomes overpowering

for high values of pFP and pFN , especially when the number of sites S sampled is low. One

consequence of this problem is that we could not use the shape of the SFS to examime natural

selection on deletions under the models we propose here, as the error rates and sample sizes

for deletions are so small as to render any PRF-SFS inferences meaningless. In fact, when

we subject the deletions to PRF-SFS analysis, their confidence intervals are compatible with

an extremely large range of parameter values for γ, both negative and positive. Moreover, the

same problem would be encountered if existing categories were subdivided too finely. With this

in mind, we have presented our data as finely subdivided as possible while still allowing us to

conduct meaningfully powerful tests.
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7.4 Testing hypotheses of natural selection

To test for the presence of natural selection, for each partition of the data (chromosome×mutation

type and annotation type×mutation type), we set the demographic parameters to reflect a 1-

epoch model as justified above and iterated over a parameter grid for the scaled selection coef-

ficient γ using the multinomial model as described in Williamson et al. (S30) in order to obtain

E [xi] for a sample size of 11, which is meant to represent the 10 natural lines we surveyed plus

the reference genome. Typically, this expectation would be used to calculate the ln(L) of data

of the data in the following way:

ln (L) =
n−1∑
i=1

O [xi] ln

(
E [xi]∑n−1

i=1 E [xi]

)
(10)

Where O [xi] is the observed number of sites in the ith frequency class and E [xi] is the expected

number under a PRF model. However, this formulation neglects the effects of ascertainment and

error. Adjusting the expectations of the SFS based on a particular model of ascertainment bias

and error can incorporate these forces directly into the likelihood ratio test inferences. There-

fore, instead of the formulation in Equation 10, we first incorporate ascertainment bias and error

into the expectation of the SFS. Subjecting the expected SFS to correction for ascertainment

bias reduced the expectation from a sample size of 11 to a sample size of 10, which represents

discarding the reference line, as no mutations can be ascertained there. The expection under a

PRF model and an ascertainment bias model was then expressed as E [yi]. After correcting for

error, we obtained the expectation of the SFS in terms of E [zi], which simply replaces E [xi] in

Equation 10 above.

From these modified expectations, we obtained both the maximum likelihood estimate

(MLE) for γ as well as the parameter range for the 95% confidence interval. The 95% confi-

dence interval was obtained within a likelihood ratio testing (LRT) framework. We determined

what ln (Likelihood) difference would lead to a rejection of the null hypothesis at an error rate
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of α = 0.05 by examining the χ2 distribution:

X2 = 2×∆ ln (Likelihood) (11a)

χ2
0.95,df=1 = 3.84 (11b)

∆ ln (Likelihood)Critical =
χ2

0.95,df=1

2
= 1.92 (11c)

Thus, the 95% confidence intervals reported reflect the range of parameter values within 1.92

likelihood units of the MLE.
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Figure S1: Geographic distribution of natural D. melanogaster populations used in this
study. The melanogaster lines were derived from sub-Saharan Africa and are indicated by
numbers whose names are listed in Table S1.
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Figure S2: Confirmation strategy for duplications. In order to confirm duplications identi-
fied by the HMM, we designed primers to regions within the putative duplications. Each line
represents the genome in a region of putative tandem duplication. The unduplicated regions are
represented by gray segments. In the wild-type genome (top), the region that is hatched green
and blue represents the region duplicated in the mutant genome (bottom). In the mutant genome,
the 5′ most copy is in green and the 3′ most is represented in blue. The diagnostic primers are
designed as indicated by the orange and blue arrows as indicated in the figure. With respect to
the single copy genome (top) the primers are divergent and consequently cannot initiate a PCR
reaction. However, when a tandem duplication occurs (bottom) the orange and blue primers
become convergent, allowing amplification. Notably, even if the duplication is accompanied by
inversion, primers of the same color will come into convergence, allowing amplification (not
shown).
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Unique

deletion

Unique

duplication

Redundant

deletion

Present in Reference Strain Absent in Reference Strain

Ancestral State

Derived State

2N=2

2N=0

2N=2

2N=22N=4

2N=4

a b c

Figure S3: Types of copy number change. a) Unique deletions, where the ancestral copy
number is 1 (2N = 2) and the derived is 0; b) Unique duplications where the ancestral copy
number is 1 (2N = 2) and the derived is 2 fold higher (2N = 4); c) Redundant deletions where
the ancestral copy number is 2 (2N = 4) and the derived copy number is half that (2N = 2).
Black segments refer to regions of the genome that don’t change. Red segments denote regions
of the genome that are present in single copy in the reference genome but are polymorphic in
our natural lines for either more (2N = 4) or fewer (2N = 0) copies. The pink segments
are paralogous copies of the red segments and are absent in the reference genome. The dotted
segments denote regions of the genome lost by a deletion event.
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A.

Site Frequency Spectrum Plot for Genomic Regions
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B.

Site Frequency Plot for Chromosomes
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Figure S8: Site frequency spectra for duplications in the D. melanogastergenome. The fig-
ures show the site frequency spectrum for duplications of various partitions. In each subfigure,
the black bar represents our most conservative null hypothesis that takes into account demogra-
phy, ascertainment bias, and error (both false positives and false negatives). A) Comparison of
the SFS between different annotation partions in the genome. The partitions mirror those in Fig.
1 in the main text. B) Comparison of the SFS between different chromosomes in the genome.
“prfreq0” is the expected SFS under bias and error for γ = 0, while “prfreq15” is the same for
γ = 15.
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Name Location Map Source Major Pop. Minor Pop.
Co Congo (Brazzaville) M1 1 1 -
Ga Gabon (N’Toum) M2 1 1 2
Ken48 Kenya M3 2 1 -
KK Kenya (Kakamega) M4 1 1 -
KM Kenya (Malindi) M5 1 2 1
La79 Zambia (Luangwa) M6 2 1 -
MD Cameroon (Mbalang-Djalingo) M7 1 1 -
ML Malawi (Mwanza) M8 1 1 -
MW6 Malawi M9 2 2 -
NK Cameroon (Nkouondja) M10 1 1 -
NM Nigeria (Maiduguri) M11 1 1 -
Nr Niger (Kareygorou) M12 1 1 -
OK17 Botswana (Okavango Delta) M13 2 2 -
ZH1 Zimbabwe (Harare) M14 2 2 -
ZS5 Zimbabwe (Sengwa) M15 2 1 -

Table S1: Lines used in this study. Name: the names of the natural D. melanogaster lines used
in this study; Location and Map: their geographical locations with respect to the map on Fig.
S1; Source: the provider of the lines; Major Pop.: the sub-population from which most of the
SNP loci are derived; Minor Pop.: the sub-population from which the minority of SNP loci are
derived, if any. For sources: 1 indicates lines obtained from collections made by available by
John Pool (S3); 2 indicates lines obtained from the stocks in the laboratory of Chung-I Wu (S4),
with lines M14 and M15 first used by the Aquadro lab in (S5). The populations in “Major Pop.”
and “Minor Pop.” refer sub-populations inferred from STRUCTURE.
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K ln [P (D)] var {ln [P (D)]} α± 1 Fst,1 Fst,2 Fst,3

1 -7930.6 302.1 - 0.0018 - -
1 -7939.7 322.9 - 0.0004 - -
1 -7943.3 327.2 - 0.0009 - -
2 -7883.4 1446.2 0.0537 0.0008 0.3938 -
2 -7754.2 1250.6 0.0567 0.0282 0.3861 -
2 -7865.9 1410.1 0.0519 0.0022 0.3934 -
3 -9886.3 6065.8 0.1279 0.2497 0.427 0.2429
3 -9787.1 5877.3 0.1293 0.427 0.2407 0.2513
3 -9730.4 5774.6 0.1249 0.4249 0.2425 0.2508

Table S2: Population structure; Representative results from different runs of STRUC-
TURE. We include 3 runs of STRUCTURE each for numbers of subpopulations (K) ranging
from 1 to 3. For each run, the burn-in length was 100,000 iterations of the Markov chain and
the run time was an additional 100,000 iterations.

Table S3: CNP calls for the D. melanogaster genome. The spreadsheet describes the coor-
dinates of mutations called by the criteria described above in Section 5.2. The start and end
coordinate describe the first and last probes above the higher threshold. The context column
describes what types of gene annotation the mutations overlap, following the designations in
Fig. 1 in the main text.

Table S4: True breakpoints obtained for CNPs following sequencing. The spreadsheet com-
pares the coordinates estimated from the model and those obtained empirically following se-
quencing.

Table S5: List of genes completely duplicated or deleted. The spreadsheet lists all genes
duplicated/deleted in its entirety. For each gene there is information regarding if there are other
genes completely mutated in the same event, chromosome location, known biological function
and presence of paralogs in the genome.

40



Table S6: List of the genes used to collect silent SNPs and their corresponding genomic
locations. The spreadsheet lists all silent SNP locations. The last column references the original
article where these loci where first surveyed. Reference S24 reports that exon size influences
the effectiveness of selection in that selection is less effective in long exons when compared to
small exons as a result of Hill-Robertson interference. Hence, we only collected polymorphism
data from those loci that showed the least amount of constraint (i.e., long exons).

Table S7: Site frequency spectra of duplications and deletions. The spreadsheet shows the
distribution of duplications and deletions among the 15 lines used in this study partitioned by
chromosome arm and genomic context.
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