SUPPLEMENTARY INFORMATION

Efficient population modification gene-drive rescue system in the malaria mosquito *Anopheles stephensi*

Adriana Adolfi^{a,1}, Valentino M. Gantz^b, Nijole Jasinskiene^a, Hsu-Feng Lee^a, Kristy Hwang^a, Emily A. Bulger^{b,c,2}, Arunachalam Ramaiah^{d,e}, Jared B. Bennett^f, Gerard Terradas^{b,c}, J.J. Emerson^d, John M. Marshall^g, Ethan Bier^{b,c}, Anthony A. James^{a,h*}.

^a Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-3900, USA.

^b Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0349, USA.

^c Tata Institute for Genetics and Society (TIGS)-UCSD, La Jolla, CA 92093-0335, USA.

^d Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.

^e Tata Institute for Genetics and Society (TIGS)-India, Bangalore, KA 560065, India.

^f Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA 94720, USA.

^g Division of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA.

^h Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-4025, USA.

*Corresponding author: Anthony A. James, <u>aajames@uci.edu</u>

Current addresses:

¹ Liverpool School of Tropical Medicine, Vector Biology Department, L3 5QA Liverpool, UK.

² Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94158, USA; The Gladstone Institutes, San Francisco, CA 94158, USA.

This document contains:

- Supplementary Figures 1-6
- Supplementary Tables 1-13

Supplementary Figure 1. Confirmation of precise site-specific integration and *kh* recoding in the Rec*kh* gene drive line. a) Schematic representation of the integration locus in Rec*kh*, as in Fig. 1b, showing annealing sites of the primers used to verify the integration sites (black and green triangles) of the pRec*kh* recoding element into the nRec line. Recoded *kh* A.gam3': recoded portion of the *kh* cDNA sequence followed by the 3'-end regulatory sequence of the *An. gambiae kh* gene. attP: recombination site for $\varphi C31$ -mediated integration. 3xP3-GFP: fluorescent marker driven by an eye specific promoter. *vasa* promoter-Cas9: Cas9 driven by the germline-specific *vasa* promoter. U6A gRNA-kh2: guide RNA targeting *kh* driven by the ubiquitous promoter of the U6A gene. Internal primers Rec-kh-rv2 and eGFP-fw anneal within the pRec*kh* donor element while external primers Kh1-ext-fw and Vasa-rv anneal to sequences outside of the homology arms present in the donor plasmid. **b**) Gene amplification and sequencing of a diagnostic fragment spanning the 5'-end integration and sequencing of the 3'-end integration site following the cut mediated by gRNA-sw4 (PCR1), which is also the *kh* recoding site. **c**) Gene amplification and sequencing of the 3'-end integration site following the cut mediated by gRNA-sw4 (PCR1), which is also the *kh* recoding site. **c**) Mosquitoes from the nRec and wild-type (WT) lines were included as controls. Ladder is GeneRuler 1 kb Plus. Source data are provided as a Source Data file.

Single release of males, total of 200 individuals/cage

Supplementary Figure 2. Schematic representation of the small cage protocol. A total of nine 5,000 cm³ cages were set up with triplicate (A, B and C) initial release ratios of 1:1, 1:3 and 1:9 Rec*kh* drive to wild-type (WT) males. WT females were added to reach a sex ratio of 1:1. A subset of 500 larvae was selected randomly from the progeny obtained from each cage immediately after hatching and screened as L4 larvae and pupae for the presence of the GFP fluorescent marker and the eye color, respectively. A subset of 200 larvae was selected randomly immediately after hatching and reared to adulthood to populate the following set of cages. All individuals from the first generation after release of cages 1:9 were screened and added to seed new cages in proportion to their GFP⁺ phenotype. The remainder were reared to L4 and stored in ethanol for population counting and sequencing analyses. This protocol was repeated every three weeks for 18 consecutive generations.

Supplementary Figure 3. Population size over time in caged populations seeded with three different release ratios of Reckh to wild-type (WT) males. The total larval population was estimated every two generations in each of the triplicate cages (A, B, and C) seeded with 1:1 (a), 1:3 (b) and 1:9 (c) release ratios of Reckh to WT males by taking 6-9 replicate measurements of randomly-selected L4 larvae. Bars represent the standard deviation from the mean. a) Each data point represents the mean obtained from nine replicate measurements (n = 6) for generations 4-18. b) Each data point represents the mean obtained from 1 and six replicate measurements (n = 6) for generations 1.2 and six replicate measurements (n = 9) for generations 2-18. c) The entire larval population was counted in generation 1, while for the other generations each data point represents the mean obtained from 6 replicate measurements (n = 6). Source data are provided as a Source Data file.

Supplementary Figure 4. EJ-induced kh^- (white) alleles. The frequency of EJ-induced kh^- alleles over time in all cages was inferred from the number of GFP⁻/white individuals carrying two copies of non-functional mutated alleles using the formula \sqrt{N} white-eyed individuals / N total mosquitoes derived from the Hardy-Weinberg equation. Each data point represents the mean with SEM from three replicate cages. Dotted red line represents the average kh^- allele frequency in all cages during the entire experiment. Source data are provided as a Source Data file.

Supplementary Figure 5. Comparative long-time dynamics of the Reckh and nRec gene drive lines in small cage laboratory trials. Reckh carries a recoding system that maintains kh gene function after insertion, while the insertion of nRec determines the loss-of-function of the kh allele. Drive efficiency is measured as the accumulation of the fluorescence marker in three replicate populations of Reckh (green) and nRec (red) An. stephensi mosquitoes with initial release ratios of drive to wild-type males of 1:1 (a), 1:3 (b), and 1:9 (c). nRec data are from Pham *et al.*¹.

Supplementary Figure 6. Observed and model predicted Rec*kh* gene drive dynamics. Observed (Expts 1-3, solid lines) and predicted (Model, dashed lines) *GFP* and *kh* marker phenotype combinations for 1:1 (a), 1:3 (b), and 1:9 (c) Rec*kh*(HW):wild-type(WW) male releases in 18 non-overlapping generations. *Black/GFP*⁺ individuals have at least one copy of the H drive allele (i.e. genotypes HH, HW, HR and HB, where R represents an in-frame, cost-free resistant allele, and B represents an out-of-frame or otherwise-costly resistant allele). These individuals spread to near-fixation within ~7 generations (a), 7-12 generations (b), 12 generations (c) of introduction through the inheritance-biasing action of the H allele. *White/GFP*⁻ individuals lack both the gene drive construct and a copy of the W or R allele, and hence have genotype BB. B alleles are selected against when present in BB females, but their elimination is slowed due to their viability in heterozygotes and BB males. *Black/GFP*⁻ individuals are initially WW, but also include RR, RB, RW and BW genotypes. These genotypes are depleted through the action of the gene drive system but persist at low levels largely due to a small number of R alleles that are generated and persist in the population as a result of their cut-resistant phenotype.

Supplementary Table 1. Swap microinjection data.									
AsMCRkh2 G_0 G_0 G_1 GFP ⁺ G_1 GFP ⁺ DsRed ⁻ adults									
(nRec) embryos	larvae	adults	DsRed ⁻ larvae/tot	From ∂4 founder	From ♀4 founder				
504259 184 $(85 \circlearrowright + 99 \updownarrow)$ 96/25,29359 $(33 \circlearrowright + 26 \heartsuit)$ 13 $(7 \circlearrowright + 6 \heartsuit)$									
Embryos were obtained from DsRed ⁺ AsMCRkh2 (nRec) females mated to wild-type (WT) males.									

 G_0 individuals were grouped in 27 male founder pools of 2-4 males and 11 female founder pools of 7-10 females and crossed to WT.

Supplementary Table 2. Drive transmission through Reckh males and females.														
				(3 progen	y		Tota	Transmission		HDR			
G ₁	G ₂	Rep	GF	P ⁺		GFP-		l(n)	(% GFP ⁺)		% %			
			Black	Mos	Black	Mos	White	I (II)						
		А	149	0	0	0	0	149	100		100			
	III A	В	248	0	0	0	0	248	100		100			
	пп ()	С	313	0	0	0	0	313	100		100			
Hh ∂		tot	710	0	0	0	0	710	100	00.0	100	00 5		
	Hh ♀	А	269	0	0	0	0	269	100	99.8	100	99.5		
		В	258	1	0	0	1	260	99.2		98.5			
		С	329	1	0	0	1	331	99.4		98.8			
		tot	856	2	0	0	2	860	99.5		99.1			
		А	387	0	322	0	0	709	54.6		9.2			
	TTI. 7	В	201	0	143	0	0	344	58.4		16.9			
	Hn O	С	98	0	50	0	0	148	66.2		32.4			
		tot	686	0	515	0	0	1201	57.1	57	14.2	14		
пп ¥		А	217	0	57	1	98	373	58.2	57	16.4	14		
	III. O	В	228	0	96	0	98	422	54		8.1			
	Hn♀	С	63	0	24	0	38	125	50.4		0.9			
		tot	508	0	177	1	234	920	55.2		10.4			

Supplementary Table 2. Drive transmission through Reckh males and females

'H' is the kh^{Rec^+} drive allele; 'h' is a non-drive allele.

G1 individuals derived from the cross between HH males and wild-type (hh) females.

All drive individuals were outcrossed to wild-type counterparts en masse in three replicate cages (Rep A, B, C).

Transmission % is the proportion of individuals inheriting the drive element (GFP⁺).

HDR % is the proportion of WT alleles converted into drive alleles by HDR and is calculated using the formula 2(X - 0.5n)/n ('X' is the number of GFP⁺ individuals and 'n' the total number of mosquito counted).

The transmission and HDR rates for the male and female lineages were calculated by averaging the percentages observed in a total of 6 cages (3 from the male parent and 3 from the female parent).

Supplementary Table 3. Reproductive parameters of Rec <i>kh</i> and <i>kh⁻/kh⁻</i> females.										
	WT	Reckh homoz	Reckh heteroz	White	One-Way					
	kh ⁺ /kh ⁺	kh ^{Rec+} /kh ^{Rec+}	kh ^{Rec+} /kh ⁻	kh ⁻ /kh ⁻	ANOVA					
Feeding success ^a	69/75 (92%)	78/87 (90%)	96/99 (97%)	82/94 (87%)	p = 0.766 F (3, 6) = 0.388					
Survival after blood meal ^b	68/69 (99%)	75/78 (96%)	96/96 (100%)	24/82 (29%)	$p = 0.0013^{**}$ F (3, 6) = 21.3					
Laying females ^c	44/59 (75%)	46/73 (63%)	48/65 (74%)	10/24 (42%)	p = 0.9109 F (3, 6) = 0.173					
Mean No. eggs/female ^d (Fecundity)	91 (± 6 SEM) n=31	87 (± 5 SEM) n=30	89 (± 4 SEM) n=30	45 (± 13 SEM) n=10	$p = 0.0001^{***}$ F (3, 97) = 7.65					
Mean No. larvae/female ^e (Fertility)	73 (± 5 SEM) n=31	75 (± 5 SEM) n=30	79 (± 4 SEM) n=30	26 (± 8 SEM) n=10	<i>p</i> < 0.0001**** F (3, 97) = 11.7					

^a Females that fed/total number of females in the cage. 2-3 replicate experiments were performed for each line.

^b Females that survived a blood meal/total number that fed. 2-3 replicate experiments were performed for each line. ^c Females that laid eggs/total blood-fed female set up. 2-3 replicate experiments were performed for each line.

^d Mean (±SEM) number of eggs per laying female.

^e Mean (±SEM) number of larvae per laying female.

See Supplementary Table 4 for adjusted *p* values after multiple comparisons test.

Source data are provided as a Source Data file.

Γ

FEEDING	kh^+/kh^+	kh^{Rec+}/kh^{Rec+}	kh ^{Rec+} /kh ⁻
kh^{Rec+}/kh^{Rec+}	0.9983		
kh ^{Rec+} /kh ⁻	0.9482	0.8759	
kh ⁻ /kh ⁻	0.9601	0.9827	0.7211
SURVIVAL	kh^+/kh^+	kh ^{Rec+} /kh ^{Rec+}	kh ^{Rec+} /kh ⁻
kh^{Rec+}/kh^{Rec+}	0.9952		
kh ^{Rec+} /kh ⁻	0.9996	0.9853	
kh ⁻ /kh ⁻	0.0036**	0.0024**	0.0033**
LAYING	kh^+/kh^+	kh ^{Rec+} /kh ^{Rec+}	kh ^{Rec+} /kh ⁻
kh ^{Rec+} /kh ^{Rec+}	0.9473		
kh ^{Rec+} /kh ⁻	>0.9999	0.9414	
kh ⁻ /kh ⁻	0.9665	0.9997	0.9619
EGGS	kh^+/kh^+	kh ^{Rec+} /kh ^{Rec+}	kh ^{Rec+} /kh ⁻
kh^{Rec+}/kh^{Rec+}	0.9633		
kh ^{Rec+} /kh ⁻	0.9949	0.9954	
kh ⁻ /kh ⁻	< 0.0001****	0.0004***	0.0002***
LARVAE	kh^+/kh^+	kh ^{Rec+} /kh ^{Rec+}	kh ^{Rec+} /kh ⁻
kh ^{Rec+} /kh ^{Rec+}	0.9949		
kh ^{Rec+} /kh ⁻	0.7869	0.9029	
kh ⁻ /kh ⁻	<0.0001****	< 0.0001****	<0.0001****

Supplementary Table 5. Reckh male contribution to the following generation in the presence of an equal number of wild-type males. **GFP**⁺ GFP⁻ Replicate Tot % GFP⁺ % GFP*p* value* Cage A 657 511 1168 54.8% 45.2% 0.4167 Cage B 639 709 1348 46.7% 53.3% 0.6173 769 705 1474 46% 54% 0.4841 Cage C Each cage was set up with 75 Reckh homozygous males, 75 wild-type males, and 150 wild-type females.

*Two-tail Binomial Test.

12

Supplementary Table 6. Eye phenotypes scored in a subset of ~500 individuals isolated at each generation in the 1:1 cages.																		
			1:	1 _A			1:1 _B					1:1c						
Gener		\mathbf{GFP}^{+}		GFP-		GFP ⁺		GFP-		GFP ⁺			GFP⁻					
ations	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> + Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> - White	kh ^{mos} Mos
G1	200	0	0	259	0	0	137	0	0	363	0	0	217	0	0	272	0	0
G ₂	288	0	0	206	0	0	181	0	0	294	0	0	324	0	0	147	0	0
G ₃	368	0	0	87	17	6	203	0	0	235	8	0	351	0	0	134	2	0
G4	410	0	0	63	16	1	271	0	0	179	6	0	448	0	0	19	11	1
G5	388	0	0	35	33	2	378	0	0	97	16	0	517	0	0	5	11	1
G ₆	452	0	0	1	50	0	455	0	0	16	24	0	445	0	0	0	21	0
G 7	450	0	0	0	22	0	472	0	0	3	8	0	479	0	0	0	6	0
G 8	468	0	0	0	36	0	481	0	0	0	19	0	500	1	0	0	7	0
G9	456	0	0	0	22	0	471	0	0	0	15	0	457	0	0	0	16	0
G10	469	0	0	0	16	0	481	0	0	0	1	0	464	0	0	0	5	0
G11	459	0	0	0	23	0	475	0	0	0	17	0	466	0	0	0	13	0
G ₁₂	486	0	0	0	16	0	466	0	0	0	16	0	501	0	0	0	11	0
G13	474	0	0	0	10	0	477	0	0	0	21	0	482	0	0	0	13	0
G14	491	0	0	0	6	0	476	0	0	0	8	0	462	0	0	0	10	0
G15	486	0	0	0	0	0	472	0	0	0	2	0	436	0	0	0	3	0
G16	464	0	0	0	0	0	495	0	0	0	12	0	489	0	0	0	5	0
G17	463	0	0	0	9	0	473	0	0	0	2	0	466	1	0	0	12	0
G ₁₈	459	0	0	0	4	0	475	0	0	0	0	0	467	0	0	0	17	0
тот	7731	0	0	651	280	9	7339	0	0	1187	175	0	7971	2	0	577	163	2

Supp	Supplementary Table 7. Eye phenotypes scored in a subset of ~500 individuals isolated at each generation in the 1:3 cages.																	
			1:	3 _A					1:	3 _B			1:3 _C					
Gener		GFP ⁺			GFP⁻			GFP ⁺		GFP⁻			GFP⁺			GFP-		
ations	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> + Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos
G1	111	0	0	312	0	0	63	0	0	461	0	0	80	0	0	403	0	0
G ₂	207	0	0	279	0	0	73	0	0	413	0	0	168	0	0	309	0	0
G3	259	1	0	247	8	4	75	0	0	377	22	9	250	1	0	224	5	2
G4	296	1	0	131	21	3	78	0	0	392	10	0	247	0	0	180	12	3
G ₅	409	0	0	56	28	1	101	0	0	402	15	1	449	0	0	62	8	0
G ₆	452	0	0	0	19	0	144	0	0	315	14	3	456	0	0	24	13	0
G 7	503	2	0	1	15	0	145	2	0	330	16	1	456	1	0	2	16	0
G ₈	470	2	0	0	11	0	257	0	0	214	16	0	476	0	0	0	18	0
G9	473	1	0	0	14	0	342	0	0	132	18	0	495	0	0	0	0	0
G10	496	0	0	0	6	0	390	0	0	54	15	0	481	0	0	0	4	0
G11	477	0	0	0	5	0	435	0	0	21	18	0	478	0	0	0	5	0
G12	492	0	0	0	2	0	426	0	0	18	12	0	479	0	0	0	7	0
G13	466	0	0	0	19	0	445	0	0	24	16	0	482	0	0	0	2	0
G ₁₄	463	0	0	0	9	0	479	0	0	8	8	0	479	0	0	0	3	0
G15	465	0	0	0	22	0	431	0	0	26	7	0	484	0	0	0	3	0
G16	493	0	0	0	4	0	468	0	0	20	10	0	489	0	0	0	1	0
G17	453	2	0	0	12	0	443	0	0	22	11	0	467	0	0	0	3	0
G18	488	0	0	0	14	0	464	3	0	15	4	0	476	0	0	0	1	0
G19	-	-	-	-	-	-	471	0	0	7	10	0	-	-	-	-	-	-
G ₂₀	-	-	-	-	-	-	473	0	0	20	6	0	-	-	-	-	-	-
тот	7473	9	0	1026	209	8	6203	5	0	3271	228	14	7392	2	0	1204	101	5

Supp	Supplementary Table 8. Eye phenotypes scored in a subset of ~500 individuals isolated at each generation in the 1:9 cages.																	
			1:	:9 _A			1:9 _B				1:9 _C							
Gener		\mathbf{GFP}^+			GFP-			GFP ⁺			GFP-			\mathbf{GFP}^+			GFP [−]	
ations	<i>kh</i> + Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> + Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> + Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> ⁻ White	<i>kh^{mos}</i> Mos	<i>kh</i> ⁺ Black	<i>kh</i> - White	<i>kh^{mos}</i> Mos
G1	36	0	0	457	0	0	19	0	0	479	0	0	62	0	0	447	0	0
G ₂	56	0	0	419	0	0	69	0	0	437	0	0	79	0	0	418	0	0
G3	97	0	0	347	0	0	65	0	0	449	10	2	145	0	0	315	9	3
G4	118	1	0	334	6	2	56	0	0	428	6	2	145	0	0	300	19	4
G ₅	170	0	0	297	8	0	171	0	0	297	8	1	287	0	0	210	8	2
G ₆	266	0	1	214	18	1	242	0	0	210	11	1	373	0	0	128	32	4
G ₇	275	0	0	182	36	2	342	0	0	92	39	2	354	0	0	86	29	4
G ₈	297	0	0	154	34	0	372	0	0	59	40	0	376	0	0	57	34	0
G9	455	0	0	19	29	0	445	0	0	31	20	1	436	0	0	27	30	1
G10	430	0	0	1	17	0	441	0	0	7	22	0	453	0	0	4	14	0
G11	487	0	0	0	9	0	471	0	0	0	27	0	489	0	0	1	21	0
G12	506	0	0	1	4	0	481	0	0	0	12	0	473	0	0	0	15	0
G13	494	0	0	0	4	0	452	0	0	0	6	0	489	0	0	0	7	0
G14	461	0	0	1	6	0	460	0	0	0	6	0	478	0	0	0	7	0
G15	472	0	0	0	0	0	466	0	0	0	2	0	462	0	0	0	4	0
G16	486	0	0	0	2	0	481	0	0	0	4	0	445	0	0	0	3	0
G17	476	0	0	0	2	0	483	0	0	0	1	0	506	0	0	0	0	0
G18	489	0	0	0	4	0	485	1	0	0	0	0	491	0	0	0	5	0
тот	6071	1	1	2426	179	5	6001	1	0	2489	214	9	6543	0	0	1993	237	18

Supplementary Table 9. Sequences of non-drive alleles in non-drive white-eyed (GFP-/*kh*-) individuals from all cages at generation G₃.

C: cage; I: individual mosquito; WT: wild-type; gRNA; PAM; mutation; F: frame; FS: frameshift; IF: in frame; HOM: homozygous.

С	Ι	Allele 1	Allele 2	F
	WT	CACGCGATGGTTCCGTTCTACGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGCAGGGCATGAACGCGGG	
	1	CACGCGATGGTTCCGTTCTACGCAGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTTATGGATGGGCATGAACGCGGG	FS/FS
	2	CACGCGATGGTTCCGTTCTGCACGAAAAGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAGGCGCTGGATCAAGGCAGGGCATGAACGCGGG	FS/FS
	3	CACGCGATGGTTCCGTTCTAC-GGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAGGGCAGGGCATGAACGCGGG	FS/FS
	4	CACGCGATGGTTCCGTTCTACAGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAGGGCATGAACGCGGG	IF/FS
1:1 _A	5	CACGCGATGGTTCCGTTCATCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTAGGCAGGGCATGAACGCGGG	FS/FS
	6	CACGCGATGGTTCCGTTCTACCGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTAAATCGCAGGCAGGGCATGAACGCGGG	FS/FS
	7	CACGCGATGGTTCCGTTCTACCAGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAGTCGCACGGCAGGGCATGAACGCGGG	FS/FS
	8	CACGCGATGGTTCCGTTCTAC-GGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCGAT-GGCAGGGCATGAACGCGGG	FS/FS
	9	CACGCGATGGTTCCGTACGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCCGTTTCCCCGGCAGGGCATGAACGCGGG	IF/IF
	•		·	
	1	CACGCGATGGTTCCGTTCTACGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAGGCAGGGCATGAACGCGGG	FS/IF
	2	CACGCGATGGTTCCGTTCTACGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGATGGCAGGGCATGAACGCGGG	FS/FS
	3	CACGCGATGGTTCCGTTCTGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCCACGCAGGGCATGAACGCGGG	IF/FS
1.1	4	CACGCGATGGTTCCGTTCTACGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGACCAGGCAGGGCATGAACGCGGG	FS/IF
1.18	5	CACGCGATGGTTCCGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCCGGCAGGGCATGAACGCGGG	FS/IF
	6	CACGCGATGGTTCCGTTCTACGCGGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAGGGAACCATCAAAGGCACGTCAAGAACGCGGG	FS/FS
	7	CACGCGATGGTTCCGTTCTACGCAGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCGCGGCAGGGCAGGGCATGAACGCGGG	IF/IF
	8	CACGCGATGGTTCCGTTCAGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTTGCACGCGTTGGCAGGGCATGAACGCGGG	FS/FS
	•		·	
1.1	1	CACGCGATGGTTCCGTTCTGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCCACAGGGGCAGGGCATGAACGCGGG	IF/FS
1:10	2	CACGCGATGGTTCCGTTCTACGGGCATGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGGCGGGCATTGCATGAACGCGGG	FS/FS
	•		·	
1.2	1	CACGCGATGGTTCCGTTGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGCAGGGCAGGGCATGAACGCGGG	FS/FS
1:3A	2	CACGCGATGGTTCCGTTCTACGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGATGGCAGGGCATGAACGCGGG	FS/FS

	1	CACGCGATGGTTCTACGCAGGGCATGAACGCGGG	CACGCGATGGTTCTACGCAGGGCATGAACGCGGG	FS HOM
	2	CACGCGATGGTTCCGTTCTACGCAGGGCATGAACGCGGG	AGGGCATGAACGCGGG	FS/FS
	3	CACGCGATGGTTCCGTTCTACAGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGCGATGGTTCCGGCAGGGCATGAACGCGGG	FS/FS
	4	CACGCGATGGTTCCGTTCTACGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAGGGCAGGGCATGAACGCGGG	FS/FS
1:3 _B	5	CACGCGATGGTTCCGTTCTACGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGCGATGGCAGGGCATGAACGCGGG	FS/FS
	6	CACGCGATGGTTCCGTTCACGCGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAGGCAGGGCATGAACGCGGG	FS/IF
	7	CACGCGATGGTTCCGTTCGCCAGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTAGTTCCGGCAGGGCATGAACGCGGG	FS/FS
	8	CACGCGATGGTTCCGTTCTACGCCGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCCGTT-GCAGGGCATGAACGCGGG	FS/FS
	9	CACGCGATGGTTCCGTTCTAGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACCGCGCGATGGTTCCGTGGTTCCGGCAGGGCATGAACGCGGG	FS/FS
1:3c	1	CACGCGATGGTTCCGTTCTACAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACATGAACGGCAGGGCATGAACGCGGG	FS/FS
	•		•	
	1	CACGCGATGGTTCCGTTCTACGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAG-CAGGGCATGAACGCGGG	FS/FS
1:9 _B	2	CACGCGATGGTTCCGTTCTACTCCGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGAACGTTCACGGCAGGGCATGAACGCGGG	FS/FS
	3	CACGCGATGGTTCCGTTCTACG-GCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACG-GCAGGGCATGAACGCGGG	FS HOM
	1	CACGCGATGGTTCCGTTCTACAAGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCCGCGTGAACGGCGGCCTGGTTCATGGTATGACATGAACGCGGG	FS/FS
	2	CACGCGATGGTTCCGTTCCGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCCGCGATGGCAGGGCATGAACGCGGG	IF/FS
1:9 _C	3	CACGCGATGGTTCCGATGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGATGGCAGGGCATGAACGCGGG	FS HOM
	4	CACGCGATGGTTCCGTTCTAC-GGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACTCGAAATCACGCGATGGTTCCGTTCTAAGGCAGGGCATGAACGCGGG	FS/FS
	5	CACGCGATGGTTCTACGCAGGGCATGAACGCGGG	CACGCGATGGTTCTACGGCAGGGCATGAACGCGGG	FS/FS

Supplementary Table 10. Sequences of drive and non-drive alleles in drive white-eyed (GFP ⁺ / <i>kh</i> ⁻) individuals.
--

C: Cage; G: generation;	I: individual mosqu	iito; WT: wild-type;	gRNA; PAM	; mutation; Recoded-kh.
			,,,,	,, _,, _

С	G	Ι	Non-drive Allele	Reckh Drive Allele
		WT	CACGCGATGGTTCCGTTCTACGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGACAAGGAATGAATGCAGGATTC
1:1c	G ₈	1	CACGCGATGGTTCCGTTCTACATGAACGCGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGATGGTTCCGGACAAGGAATGAATGCAGGATTC
1:3 _A	G7	2	CACGCGATGGTTCCGTTCTACAGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGATGGTTCCGGACAAGGAATGAATGCAGGATTC
1:3 _A	G7	3	CACGCGATGGTTCCGTTCTACGC-CAGGGTATGAACGCGGG	CACGCGATGGTTCCGTTCGACAAGGAATGAATGCAGGATTC
1:3 _A	G ₈	4	CACGCGATGGTTCCGTTCTACGC-CAGGGTATGAACGCGGG	CACGCGATGGTTCCGTTCGACAAGGAATGAATGCAGGATTC
1:3 _A	G8	5	CACGCGATGGTTCCGTTCTACGG-CAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAAGGAAGGGACAAGGAATGAAT
1:9 _A	G4	6	CACGCGATGGTTCCCGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTGGACAAGGACAAGGAATGAAT

Supplementary Table 11. Amplicon sequencing of non-drive alleles in pooled individuals from cage 1:3_B at generations G₀, G₈, and G₁₄.

gRNA and PAM in the wild-type allele; Mutation.

Cage 1:3 _B Generation G ₀								
Reads	Sequence	Relative abundance (%)						
315911	GATGGTTCCGTTCTACGGGCAGGGCATGAACGCG	97.65						
938	GATGGTTCCGTTCTACGGGCAGGACATGAACGCG	0.29						
730	GATGGTGGCAGGGCATGAACGCG	0.23						
600	GATGGTTCCGTTCTACGGACAGGGCATGAACGCG	0.19						
583	GATGGGGCAGGGCATGAACGCG	0.18						
500	GATGGTTCCGTTGGCAGGGCATGAACGCG	0.15						
391	GATGGTTCCGTGGCAGGGCATGAACGCG	0.12						
357	GATGGTTGGCAGGGCATGAACGCG	0.11						
343	GATGGTTCCGGCAGGGCATGAACGCG	0.11						
325	GATGGTTCCGTTCTCCGGGCAGGGCATGAACGCG	0.10						
235	GATGGTTCCGTTCCGGCAGGGCATGAACGCG	0.07						
229	GATGGTTCCGTTCTAGGCAGGGCATGAACGCG	0.07						
194	GATGGGCAGGGCATGAACGCG	0.06						
190	GATGGTTCCGGGCAGGGCATGAACGCG	0.06						
183	GATGGTTCCGTTCTGGCAGGGCATGAACGCG	0.06						
161	GATGGTTCCGTTCTACGAGCAGGGCATGAACGCG	0.05						
158	GATGGTTCCGTTCGGCAGGGCATGAACGCG	0.05						
156	GATGGCAGGGCATGAACGCG	0.05						
139	GATGGTTCCGTTCTACG-GCAGGGCATGAACGCG	0.04						
136	GATGGTTCCGTTCAGGGCATGAACGCG	0.04						
129	GATGGTTCGGCAGGGCATGAACGCG	0.04						
129	GATGGTTCCGTTCTATGGGCAGGGCATGAACGCG	0.04						
126	GATGGTTCCGTTCTACGGGCAGGGCATGGACGCG	0.04						
122	AATGGTTCCGTTCTACGGGCAGGGCATGAACGCG	0.04						
115	GATGGTTCCGTTCTACGGGCAGTGCATGAACGCG	0.04						

111	GATGGTTCCGTTCTACGGGCAGGGCATGAACACG	0.03								
103	GATGGTTCCGTTCTACAGGGCATGAACGCG	0.03								
103	GATGGTTCCGTTCATGGCAGGGCATGAACGCG	0.03								
101	GATGGTTCCGTTCTACGGGCAGGGCATGAACGCT	0.03								
323498										
	Cage 1:3 _B Generation G ₈									
Reads	Sequence	Relative abundance (%)								
175157	GATGGTTCCGTTCTACGGGCAGGGCATGAACGCG	83.28								
6438	GATGGTTCCGTTCTACAGGGCAGGGCATGAACGCG	3.06								
4558	GATGGTTCCGTTCTACTAAACACGCGTTGCCATGAACGCGGTTCTACTAAACAGGCAGG	2.17								
4382	GATGGTTCCGTTCTACGCATGAACGCAGGGCATGAACGCG	2.08								
4137	GATGGTTCCGTTCCGATGGCAGGGCATGAACGCG	1.97								
4123	GATGGTTCCGTTCTACAACGCAACGTTCTACAACGGGGCAGGGCATGAACGCG	1.96								
4042	GATGGTTCCGTTCCGGCAGGGCATGAACGCG	1.92								
2124	GATGGTTCCGTTCTACGGGGCAGGCATGAACGCG	1.01								
2085	GATGGTTACGTTCTACATGGCAGGGCATGAACGCG	0.99								
2083	GATGGTTCCGTTCTACGTTCGCGGCAGGGCATGAACGCG	0.99								
478	GATGGTTCCGTTCTACGGACAGGGCATGAACGCG	0.23								
473	GATGGTTCCGTTCTACGGGCAGGACATGAACGCG	0.22								
241	GATGGTTCCGTTCTCCGGGCAGGGCATGAACGCG	0.11								
210321										
Cage 1:3 _B Generation G ₁₄										
Reads	Sequence	Relative abundance (%)								
147513	GATGGTTCCGTTCTACAACGCAACGTTCTACAACGGGGCAGGGCATGAACGCG	48.16								
77514	GATGGTTCCGTTCTACGT	25.31								
35534	GATGGTTCCGTTCTACGGGGCAGGCATGAACGCG	11.60								
22641	GATGGTTCCGTTCTACGGAACCGGCAGGCATGAACGCG	7.39								
14200	GATGGTTCCGTTCTACCAGCGCAGGGCAGGGCATGAACGCG	4.64								
4036	GATGGTTCCGTTCATGTGGGCATGAACGCG	1.32								

1091	GATGGTTCCGTTCCCGCGTGGGCAGGCATGAACGCG	0.36
796	GATGGCAGGCATGAACGCG	0.26
661	GATGGTTCCGTTCTACAACGCAACGTTCTACAACTGGGCAGGGCATGAACGCG	0.22
623	GATGGTTCCGTTCTACAACGCGCCGTTCTACAACGGGGCAGGGCATGAACGCG	0.20
593	GGGCAGGCATGAACGCG	0.19
455	GATGGTTCCGTTCTACAACGCAACGTTCTACACCGGGGCAGGGCATGAACGCG	0.15
236	GATGGTTCCGTTCTACGGGCAGGGCATGAACGCG	0.08
151	GATGGTTCCGTTCTACAACGTTCTACAACGGGGCAGGGCATGAACGCG	0.05
134	GATGGTTCCGTTCTACAACGCAACGTTATACAACGGGGCAGGGCATGAACGCG	0.04
107	GATGGTTCCGTTCTACGGGGCAGACATGAACGCG	0.03
306285		

Supplementary Table 12. Sequences of non-drive alleles in single non-drive black-eyed (GFP⁻/ kh^+) individuals from cage 1:3_B at generation G₁₆.

I: individual mosquito; WT: wild-type; gRNA; PAM; mutation; F: frame; IF: in frame; FS: frameshift; HOM: homozygous; AAC: amino acid change in IF allele.

Ι	Allele 1	Allele 2	F	AAC
WT	CACGCGATGGTTCCGTTCTACGGGCAGGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGCAGGGCATGAACGCGGGCTTTGAAGACTGTAGC		
1	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/IF HOM	Q330A
2	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/IF HOM	Q330A
3	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/IF HOM	Q330A
4	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/IF HOM	Q330A
5	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/IF HOM	Q330A
6	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/IF HOM	Q330A
7	CACGCGATGGTTCCGTTCTACGGGCCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGTTGTAAGACTGTAGC	IF/FS	Q330P
8	CACGCGATGGTTCCGTTCTACGGGCCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACGTTGTAAGACTGTAGC	IF/FS	Q330P
9	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCAACGGGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/FS	Q330A
10	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCAACGGGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/FS	Q330A
11	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCAACGGGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/FS	Q330A
12	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCATGTGGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/FS	Q330A
13	CACGCGATGGTTCCGTTCTTGTGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCAACGGGGCATGAACGCGGGCTTTGAAGACTGTAGC	IF/FS	W328L; G329W; Q330A
14	CACGCGATGGTTCCGTTCTACGGGGCAGGCATGAACGCGGG	CACGCGATGGTTCCGTTCTACAACGCAAGGTTCTACGCGGGGCTTTGAACATGAACGC	IF/FS	Q330A

Supplementary Table 13. Eye-phenotype proportions scored for $kh^{\text{Rec+}}$ vs $kh^{+\text{R}}$ allelic challenge.															
						Replica	te Cages								
Generations	Α			В			С			D					
	GFP ⁺	GFP-	Total	GFP ⁺	GFP-	Total	GFP ⁺	GFP-	Total	GFP ⁺	GFP-	Total			
G ₁	79.3%	20.7%	300	81.2%	18.8%	394	77.9%	22.1%	653	81.4%	18.6%	420			
G ₂	80.7%	19.3%	373	85.9%	14.1%	396	82.3%	17.7%	362	87.9%	12.1%	390			
G3	84.2%	15.8%	310	89.2%	10.8%	305	84.0%	16.0%	357	89.0%	11.0%	308			
G4	86.8%	13.2%	318	90.0%	10.0%	359	85.7%	14.3%	357	89.6%	10.4%	326			
G5	88.3%	11.7%	315	91.0%	9.0%	310	87.5%	12.5%	327	89.9%	10.1%	338			
G ₆	89.4%	10.6%	320	95.7%	4.3%	304	88.9%	11.1%	341	90.8%	9.2%	336			
Experiments were conducted in four replicate cages (A-D) each seeded with 200 individuals heterozygous for a copy of the Reckh drive allele and a copy of the kh															
functional resistant allele (kh^{Rec+}/kh^{+R}) with a 1:1 sex ratio.															
All mosquitos displayed WT black eye color.															

REFERENCES

Г

1. Pham, T. B. et al. Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PloS Genet. 15, e1008440 (2019).